BOREHOLE GEOPHYSICAL CHARACTERIZATION IN THE FRAMEWORK OF THE ENOS PROJECT

MONITORING FEASIBILITY AND INITIAL RESULTS

Flavio Poletto (OGS)

Contributions: Gualtiero Böhm, Fabio Meneghini, Piero Corubolo, Biancamaria Farina, Cinzia Bellezza, Andrea Schleifer and Erika Barison

2nd Workshop of ENOS Experience-Sharing Focus Groups
Venice, 23 April 2018, 14:00 – 17:00
“Advanced techniques for site characterisation”

San Servolo, Venice, 23 April 2018
Outline

Hontomin site geophysical characterization by:

- Innovative 3D VSP monitoring (ENOS WP1 Task 1.3.2)
- Pre-survey analysis of existing geophysical data
- Pre-survey reservoir model analysis
- Survey design and in-field quality control (QC)
- Survey description and main results
- 3D VSP data editing, processing, analysis and preliminary seismic results

Next project steps and data integration (ENOS WP1 Task 1.4.1)
Innovative 3D VSP monitoring by DAS instrumented well

- Use of fiber optic acoustic sensing (iDAS) technology available at Hontomin by permanent installation to measure 3D VSPs around the CO2 injection well (HI)

- Base 3D VSP survey acquired in September 2017
- Subsequent continuation of injection activity (CIUDEN)
- Repeat (time lapse) 3D VSP survey planned in 2019
Hontomin 3D VSP acquisition

Contributions

- Flavio Poletto, Andrea Schleifer, Fabio Meneghini, Gualtiero Böhm, Piero Corubolo, Franco Zgauc, Cinzia Bellezza
- J. Carlos de Dios, Juan A. M. Vidal
- Rumen Karaulanov

fpoletto@inogs.it
jc.dedios@ciuden.es
Athena.Chalari@silxa.com

San Servolo, Venice, 23 April 2018
- Use of surface sources and permanent distributed acoustic sensors (iDAS)
- DAS cable installed in the injection (HI) well from surface to 1465 m depth
- Well receiver interval ~ 0.5 m
- Number of optical receivers 2893
- One surface-source position → One single VSP
- Areal distribution of sources repeated at surface → 3D VSP

San Servolo, Venice, 23 April 2018
Design of surface-source (shot points) acquisition map

- Analysis of existing geophysical data (from CIUDEN)
- Pre-survey reservoir model analysis
- Use of plume model simulation results (actual and maximum expected extension after 10 k ton CO2 injection)

- Needed to evaluate 3D VSP illumination zone at reservoir level, for its
 - Coverage at depth
 - Extension
 thus design source point grid, according with survey parameters and plan
a) Illumination analysis (using velocity structural model from existing 3D surface-seismic, logs and previous single-offset VSPs).

b) Example of source grid (red crosses) and calculated reflections points (blue) at depth.
Design of shot point (SP) acquisition grid: summary

• Based on pre-survey model analysis for base and time lapse
• Considering the need to cover extended offsets
• Taking into account iDAS cable sensitivity response
• Considering different incident angles for direct and reflected events
• Assuming presence of reflection and also refraction events for structural investigation at depth

• Decision to design the survey also with large offsets and with complete azimuthal disposition, according to field-access conditions
Main acquisition parameters

Source parameters:
• Two vibrators at the same shot points (SP)
• Sweep duration 16 s
• Sweep frequency 8 – 128 Hz

Recording parameters:
• 20 s recording time
• 12 vibrations per shot point (production) stack
• 3 vibrations per shot point (QC) stack

San Servolo, Venice, 23 April 2018
- Map of acquired SP
- Total no. 390 SPs
- Including “wide offset”
- Maximum offset ~ 2.1 km from HI wellhead
- 2.1 km circle in figure
Summary of 3D VSP acquisition survey results

- Approximately 12-days of survey duration
- Acquired 390 SPs, i.e., 390 VSPs, at different offsets and azimuths

Total number of acquired traces: ~ 1.130 Mega

Data quality: Good, ranging from High-quality to lower quality signals (depending on SP, offset, azimuth and event type)
- Including direct, reflection and refraction signals
- Including signal variations due to presence of fractures and faulting
3D VSP dimensions: depth, offset, azimuth

<table>
<thead>
<tr>
<th>depth</th>
<th>offset</th>
<th>azimuth</th>
</tr>
</thead>
</table>

San Servolo, Venice, 23 April 2018
QC examples (10 m plot) : ~ same azimuth, different offsets

San Servolo, Venice, 23 April 2018
QC examples: ~ comparable offsets, “orthogonal” azimuth

San Servolo, Venice, 23 April 2018
WAVEFIELD SEPARATION

- **Key role** of borehole wave-field separation for **Reservoir** analysis
- Use of **dual wave-field** method (Poletto et al. 2016, Geophysics)
- Based on calculation of dual velocity signal from native strain (DAS)
- Effective thanks to dense receiver array (trace interval 0.5 m)

- Very robust (also when direct wave is weak and at large offsets),
- Applied without need of signal picking
- Provides **DOWN-going** and **UP-going** separated wave-fields
- Used for all the VSPs of the 3D VSP dataset
Short offset (149 m)

Medium-far offset (1049 m)
San Servolo, Venice, 23 April 2018

3DVSP map and main fault’s system
Select shots on ‘south’ investigation (yellow) line (normal to fault)
Sud-North section and selected fault from Petrel model
Sud-North section, velocity calibration and synthetic model

San Servolo, Venice, 23 April 2018
Ray tracing and wave’s interpretation (including fault’s diffractions)
Ray tracing and wave’s interpretation (including fault’s diffractions)
Upgoing wave’s interpretation (including fault’s diffractions)
RESULTS AND NEXT STEPS

• Completed editing of iDAS 3D VSP field data
• Completed data correlation and stacking, (dual) wavefield separation
• PROVISIONAL RESULTS: fault’s and reservoir observability
• NEXT STEPS: in progress 3D VSP data processing for base static model characterization, including faults and reservoir, calibration of velocity model (tomography), provide structural info at depth (wave-field’s and reflection processing, migration)
• Data integration (T1.4.1) and joint interpretation (ERT and Micro-seismic), injection data
• Use 2017 survey results for planning of the next 3D VSP survey (2019)
• Analysis of dynamic model

San Servolo, Venice, 23 April 2018
Example of cross-well ERT inversion (resistivity model from Ogaya et al. 2016)

San Servolo, Venice, 23 April 2018
Conclusions

- Base 3D VSP survey acquired in September 2017
- Data processing in progress for base-model characterization
- Repeat 3D VSP survey in 2019

- Integration with ERT well data
- Integration with micro-seismic monitoring data
THANKS FOR YOUR ATTENTION