Shallow Groundwater Monitoring at the American Electric Power Plant CO2 Product Validation Facility Monitoring and Verification: ENOS WP3 Workshop 26 April 2018

In conjunction with: C02GeoNet Open Forum 2018 24-25 April 2018 San Servolo Island, Venice, Italy

Mark Kelley (Battelle)

Project Timeline

The Monitoring Program at the AEP PVF Site was a Comprehensive, Integrated Program

The PVF project at the AEP Mountaineer Power Plant consisted of a 20 MW CO₂ Capture and Storage System

CO₂ Capture and Injection took place from October 2009 - May 2011

Well network of 2 injection wells and 3 reservoir monitoring wells

Injection into two reservoirs, the Rose Run Sandstone and the Copper Ridge Dolomite

Site Layout Showing Well Proximities

Groundwater Monitoring Wells Surround the Deep Injection and Monitoring Wells.

Deep Monitoring Wells completed approx. 7,800 – 8,000 ft.

Injection Wells completed approx. 7,800 – 8,000 ft.

Direction of shallow groundwater flow

Monitoring parameters – shallow groundwater

Cations	Anions	Physical Parameters	Other ^(b)
Potassium Sodium Calcium Magnesium Iron Manganese Aluminum Barium Boron Lithium ^(b) Strontium Dissolved Silica	Chloride Sulfate Bromide Fluoride	pH ^(a) Alkalinity (Bicarbonate) Alkalinity (Carbonate) Total Dissplved Solids Specific gravity/ Density ^(b) Dissolved Organic Carbon Specific conductance ^(a) Temperature ^(a) Turbidity ^(a)	Stable hydrogen isotopes (D/H) Stable oxygen isotopes (¹⁸ O / ¹⁶ O) Stable carbon isotopes (¹³ C/ ¹² C) Dissolved CO ₂

(a) Field parameter

(b) Optional parameter, may be done at AEP's discretion

How to detect a leak signal?

- Change in chemical parameters, e.g.
 - decreased pH caused by dissolution of CO₂
 - increase in alkalinity dissolution of carbonate minerals by acidic fluids
 - increase in TDS mineral dissolution and increase in cations such as Ca⁺² and Mg⁺²
 - Increase in acid-soluble metals such as iron and manganese
- Isotopes
 - Stable oxygen and hydrogen isotopes (δ¹⁸O and δD) of shallow groundwater differ characteristically from deep brines.
 - Stable carbon isotopes (δ13C) of shallow groundwater (CO₂) differ from δ13C of anthropogenic CO₂ from coal combustion

Chemical Parameter Monitoring

Several chemical parameters increased in concentration starting around the same time that injection started

Possible indicators of upward CO2 leakage?

Stable Oxygen and Hydrogen Isotopes

Possible upward brine migration?

Stable oxygen and hydrogen isotopes were monitored in the groundwater and compared with deep brine pre-injection samples to detect upward migration of deep brine from injection reservoirs

Post baseline MW-16 (red squares) deviates from meteoric line where other shallow water samples plot.

Stable Carbon Isotope Monitoring

CO2 from coal combustion (-20 to -30‰)

No indicators of upward CO2 leakage?

Stable carbon

isotope activities

detected in all 4

wells fall between

- Further analysis indicated that the observed concentration increases in chemical indicator parameters were not due to upward migration of CO₂ from the injection reservoirs.
- Further analysis of the Stable oxygen and hydrogen isotopes indicated that the deviations in mw-16 are probably not due to upward migration of brine from the injection reservoirs.

Stable Oxygen and Hydrogen Isotopes

Possible upward brine migration?

MW-16 shows shift in ion concentrations after baseline period. But, post baseline

MW-16 not on mixing line with deep brine and baseline MW-16

Figure 9-10. Well MW-16 Piper Diagram of Pre-Injection and Post-Injection Shallow Groundwater Data (Equivalents) (Open symbols represent post-injection data. Deep brine fluid from well AEP-1 plotted for reference)

Stable Oxygen and Hydrogen Isotope data

- The changes seen in post-injection Stable Oxygen and Hydrogen Isotope data from well MW-16 appears to be due to mixing of shallow aquifer water with a highly evaporated water, which has higher TDS and is isotopically significantly heavier than meteoric water. This could be due to a number of plant activities,
- Other possible sources of water and solutes around the plant were investigated to attempt to explain the geochemical changes observed in the shallow aquifer during post-injection sampling.

- Leaky pond hypothesis water from the nearby bottom ash ponds or wastewater ponds may have leached into the shallow groundwater and caused the observed composition changes at MW-16C
- 5 ponds were sampled and compared to groundwater data
- Mixing models show that major ion ratios are not consistent with a simple mixing ratio, and different proportions of pond water were required to simulate observed δ18O values than chloride concentrations.

Summary

- It isn't easy to identify an impact to shallow groundwater, especially at industrial sites
- False positives are possible, especially with cation/anion data
- Use statistics to analyze data
- Isotope data can help explain apparent leakage signals
- If signals are detected, focus on disproving CO2/brine leakage rather than proving the cause, which may require additional data and much greater effort...and still not find the cause...

Gaps in shallow groundwater monitoring methodology

 Need protocol(s) for analyzing sampling data to discern evidence for CO2 or brine leakage...

