ENOS EMISSION QUANTIFICATION TOOLS

Helen Taylor & Dave Jones British Geological Survey

S. Graziani, S. Beaubien, S. Lombardi & S. Bigi Sapienza University of Rome (UniRoma1)

11.05.2018

UniRoma1 Mapper – what are the principles behind it?

Oldenburg and Unger, 2004

- Soil gas or flux are point measurements, thus can be slow and have insufficient resolution to find and quantify a leak
- The surface boundary layer (Z₀) has little wind mixing, therefore a potential zone of accumulation for leaking CO₂
- Sampling this layer has the potential to be rapid, high resolution and spatially accurate
- Boundary layer concentration is related to flux rate, therefore Mapper results could be used as a proxy to estimate total emissions

Design and function of the UniRoma1 Mapper

- Unit is mounted on a cart that is pushed along a grid over the area of interest
- Pictured here with lasers, can be mounted on much smaller cart
- System consists of a tube dragged on the ground surface, a pump, and a CO₂ sensor, as well as differential GPS, batteries, memory, and control electronics.
- Measurements are made every second, giving an along-trace sample spacing of about 1.5 m at normal walking speed
- Work is ongoing to maximise the signal-tonoise ratio and sensitivity, and minimise response time and memory effects

Based on original idea in Annunziatellis et al., 2008 and Jones et al., 2009

Preliminary mapping results from UniRoma1 Mapper

- Excellent correlation between the point flux measurement results and the Mapper data collected in two different directions.
- 190 flux measurements took about 10 person hours, whereas the Mapper took only about 30 minutes
- Future work will include:
 - > a linear array of Mappers to give higher resolution faster
 - > mounting the Mapper on a robot for autonomous work

Preliminary quantification results from UniRoma1 Mapper

- An empirical relationship between boundary layer concentrations and point flux values is defined based on a few points representing the total range
- The formula is used to "convert" all of the Mapper data to flux, and this data set is used to estimate total flux
- At the same time the complete, true flux dataset is also used to estimate total flux
- Initial results yielded a Mapper estimate that was about 60% of the "true" flux
- Work is on-going to improve this result

What are the potential benefits of the UniRoma1 Mapper?

- Inexpensive, robust, simple to use
- Capable of covering large areas quickly
- Spatially accurate, as anomalies are measured directly above their source with no lateral transport by wind
- Can be used for both mapping and leakage quantification
- Potential use as a reconnaissance tool that helps focus detailed work with more sensitive tools (e.g. soil gas

Combine/compare Mapper with...

- GasFinder 2 laser system
- Customised Los Gatos Research laser gas analyser
 - \cdot CH₄/CO₂/H₂O + O₂ continuous measurement
 - Mounted on Mapper cart
- GasFinder 3 scanning open path lasers (c.f. Shell LightSource)
- Continuous monitoring flux chambers, EC and soil gas monitoring stations
- Quantification methods c.f. Ginninderra
- Traditional point measurements of flux and soil gas
- · CLaDS vs GasFinder 3
- Multiple tools used in combination to validate/verify and reach 'consensus' on quantification

Combine or compare Mapper with...

- GasFinder 2 laser system
- Customised Los Gatos Research laser gas analyser
 - \cdot CH₄/CO₂/H₂O + O₂
 - Mounted on Mapper cart in continuous measurement mode
- GasFinder 3 scanning open path lasers (c.f. Shell LightSource)
- Continuous monitoring flux chambers, EC and soil gas monitoring stations
- Quantification methods c.f. Ginninderra
- Traditional point measurements of flux and soil gas
- · CLaDS vs GasFinder 3
- Multiple tools used in combination to validate/verify and reach 'consensus' on quantification E N O S

- · GasFinder 2 laser system
- Customised Los Gatos Research laser gas analyser
 - \cdot CH₄/CO₂/H₂O + O₂
 - · Mounted on Mapper cart in continuous measurement mode
- · GasFinder 3 scanning open path lasers (c.f. Shell LightSource)
- · Continuous monitoring flux chambers, EC and soil gas monitoring stations
- Quantification methods c.f. Ginninderra
- Traditional point measurements of flux and soil gas
- · CLaDS vs GasFinder 3

- Field prototype in development
- Rutherford Appleton Laboratory/Mirico + BGS
- Detection of CO₂ surface flux over large areas
- Combines open-path laser monitoring with an array of reflectors to detect and quantify leakage using tomographic reconstruction
- Significantly improved precision over existing technologies
- To be tested in controlled CO₂ release tests in the UK (STFC funded)
- To be tested against new GasFinder 3 open path scanning laser

Enabling Onshore CO₂ Storage

www.enos-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653718