

... INTEGRATED BOREHOLE SURVEY DESIGN FOR DETECTION OF MIGRATING CO2 ON FAULT PLANES AT SULCIS FAULT LAB

Flavio Poletto (OGS)

Contributions: Gualtiero Böhm, Andrea Schleifer, Giorgia Pinna, Piero Corubolo, Biancamaria Farina, Stefano Picotti and Erika Barison

WORKSHOP II - Post-Open Forum workshop organised by ENOS Venice, 26 April 2018, 14:00 – 17:00 "Storage site solutions: monitoring and verification"

E N O S

Key aspects and outline

- Monitoring CO2 migration through fault planes in the SFL sub-surface (WP3 Task 3.2.2), Integrated downhole survey design
- · Initial (actual) information (no wells)
- · Geophysical characterization
- \cdot Well plan and instrumentation design
- · Sensitivity (instrumental response)
- · Injection plan and sensitivity to CO2 (geophysical monitoring)

Integrated downhole survey design

- ≻Initial (actual) information from **surface** (no wells)
- · High resolution surface seismic lines (HR1 and HR2) (Sotacarbo, processed by OGS)
- · Electrical Resistivity (ERT) data (Sotacarbo)
- · Geological data and fault's interpretation (UniRoma1 Sapienza)

Interpretation on HR1 line

Geophysical characterization

- Two wells (monitoring vertical W1, injection directional WI)
- · Borehole measurements

Geophysical characterization (from surface seismics)

· Cross-well (CW) borehole measurements (synthetic simulation)

Drill first W1 SFL observation well (vertical ca 300 m)

- \cdot Borehole and well measurements (VSP, logs and coring)
- Surface seismic depth-calibration
- Depth information for injection well

First well (W1) instrumental design scheme

• Sensitivity and response (permanent and wireline instruments) in **W1**

First well (W1) instrumental design scheme

(*) Fiberglass or equivalent

900.0 m

800.0 m

Injection well (WI) instrumental design scheme

• Sensitivity and response (permanent and wireline instruments) in **WI**

525 0.0 m Wireline VSP, logs, coring Xwell receivers -100.0 m Permanent installation: IDAS fiber optic array Electrodes outside casing -200.0 m

700 O r

WI *

600.0 m

(*) WI measurement scheme shown with initial- indicative directional well geometry

San Servolo, Venice, 26 April 2018

500.0 m

Injection well (WI) instrumental design scheme

• Sensitivity and response (permanent and wireline instruments) in **WI**

DAS innovative technology: constellation (30 dB), HWC

DAS innovative technology: dense space array (dual)

Sensitivity (instrumental design)

 CW sensitivity and response (permanent and wireline instruments) in WI

Sensitivity (geophysical monitoring)

- · Injection plan and sensitivity to CO2 (geophysical monitoring)
- · Well plan and instrumentation design (Well's site HR1)
- Layouts including wells and injection, after UniRoma1 Sapienza fault's interpretation
- Cross-well seismic simulation
- ➤Geo-electric (ERT) monitoring simulation

Sensitivity (seismic simulation for HR1 wells)

- · Injection plan and sensitivity to CO2 (geophysical monitoring)
- Well plan and instrumentation design (Wells HR1)
- CO2 conditions at P = 30 atm, T = 18 °C:

 ρ = 68.178 kg/m3, Vp= 237.88 m/s
 Porosity = 9%
- > Injected mass: M = 5.5 ton \rightarrow sphere with R = 6 m
- Simulation parameters (2D finite difference):

Source: pressure, Ricker wavelet fc = 400 HzModel discretization: dx = dz = 0.5 mAcquired component: pressure

Sensitivity (seismic simulation for HR1 wells)

Sensitivity (electric response simulation)

- · Injection plan and sensitivity to CO2 (ERT geophysical monitoring)
- · Well plan and instrumentation design (Wells in HR1 location)

Conditions: CO2 at P = 30 atm, T = 18 °C: $\rho = 68.178 \text{ kg/m}^3$, Porosity = 9% Resistivity = 100 000 Ω^* m

Discretization of the model: dx = dz = 2.5 m

Synthetic tests CO2 observation by ERT in different configurations

LOGS

Conclusions

- · HR1 SFL with two wells
- \cdot Initial vertical well W1 provides VSP and well information
- · Update geophysical characterization at depth
- · Optimize fault drilling WI well plan
- \cdot Optimize instrumentation design of inclined injection well $\boldsymbol{W}\boldsymbol{I}$
- · CO2 injection plan depends on encountered formation properties
- \cdot Well monitoring and time lapse related to injection plan

THANKS FOR YOUR ATTENTION

Enabling Onshore CO₂ Storage

www.enos-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653718