

CO₂GeoNet Open Forum, 24-25 April 2018, San Servolo Island, Venice Post-Open Forum workshop organised by *ENOS*, 26 April 2018: Storage site solutions: Monitoring and verification

LEAKAGE DETECTION FROM WELL PRESSURE MONITORING

A. Shchipanov, L. Kollbotn, R. Berenblyum International Research Institute of Stavanger (IRIS) Contact: Anton.Shchipanov@iris.no

The challenge

Most of modern wells are equipped with Permanent Downhole Gauges (real-time pressure record)

Can we use pressure from PDGs to detect leakage out of the site?

Conclusions

- Yes, we can use pressure from PDGs to detect leakage!
- The technology is universal: we can detect any changes in the wellreservoir system like (on example of CCUS):
 - Leakage through faults (both seismic / sub-seismic) and legacy wells
 - (Dis-) Appearance of flow barriers and conductive channels
 - Well performance and CO₂ plume size
 - •
- Wide applications: CCUS, Petroleum, Thermal, ...

THANK YOU FOR YOUR ATTENTION!

Contact: Anton.Shchipanov@iris.no

REDUCED COMPLEXITY MODELLING OF LEAKAGE THROUGH FAULTS

Francesca Watson, Florian Doster Heriot Watt University

Overview of Model Concept

Quick and efficient numerical simulations are required for risk analysis and characterisation of CO₂ storage sites.

Vertical equilibrium (VE) modelling is an efficient form of **reduced complexity modelling**. It exploits the fact that in typical CO_2 storage scenarios CO_2 floats on resident brine due to buoyancy. This allows us to reduce the explicitly represented dimensions from 3 to 2.

Horizontal flow is modelled numerically and the vertical configuration of fluids is reconstructed analytically. **Leakage through fault zones** includes a vertical component of flow. Current VE formulations do not account for this.

We are developing an analytical solution for fault zone leakage which is then included in VE models.

Overview of Model Concept

Fine scale simulations are being used to model two-phase leakage of CO_2 and brine through a fault zone.

Results are used to develop an **explicit model** relating fault geometry, total fault leakage rate and CO_2 layer thickness with CO_2 leakage rate through the fault.

This leakage rate can then be included as **sub-grid scale source term** in the VE modelling framework.

The model is applied to representative models of Hontomin and Sulcis Fault Lab.

Illustration of Model Concept of Vertical Equilibrium

Enabling Onshore CO, Storage

www.enos-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653718