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Rationale: why do we look at geological buffering?

The Dutch case:

- Use of waste CO, to enhance crop growth Leveringogetieden OCAP

Wastland

- Increased use of geothermal energy in greenhouses
- Additional heat and CO, from CHP installations
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Business case for buffering: Lovoring 00 asn kasson
Noordzee

- Solve seasonal mismatch supply and demand %) P lovering CO; asn kassen

- Improve security of supply

- Serve more and more greenhouses

Additional benefits:

- Decrease dependence on natural gas

- Decrease CO, emissions

- Support development of geothermal energy in horticulture

-
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Q16-Maas reservolr

- Technical and economic feasibility of seasonal buffering in
Q16-Maas reservoir

- Triassic sandstone reservoir at 3 km depth, just offshore
Rotterdam

«  Currently producing gas and condensates NOT O SCALE

*  Bounded by normal faults, large aquifer support
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Schematic layout of buffer design
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Schematic layout of buffer design
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Reservolr simulations

Injection and back-production cycles: continuous for six months

Huff and puff: injection and production using the same well
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Reservoir behavior and back-production

» Injection of cushion gas to reduce hydrocarbon impurities in the back-produced gas
« Back-production conditions change within each cycle and with each consecutive cycle
« Gas stream will be water-saturated

«  Co-production of liquid water due to the aquifer support
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Back-production conditions —in the well
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Assumption: back-production T of impure gas stream is equal to bottom hole injection T
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Cost-benefit analysis — 20 kg/s of CO, back-production

CO, supply to greenhouses can be increased from 500 to 816 ktonne per year with the geological buffer

Rough cost estimates based on 10 cycles of back-production:
* Injection facilities: ~7 €/tonne
- Clean-up facilities and surface buffer: ~3 €/tonne

Total costs: 10 €/tonne of CO,
Current OCAP CO, price ~50 €/tonne

Adding buffer costs >> ~60 €/tonne

Current commercial foodgrade CO, price 100 €/tonne
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Key messages

Seasonal injection and back-production is possible in Q16-Maas
» Both from technical and economic point of view
«  Maximum buffer potential is constrained by back-production well dynamics
- Temperature of CO, is key parameter
« Geological buffer design and optimization for re-use is highly case specific
*  Presence and mobility of formation water and salinity play crucial role

- Both well dynamics simulations and non-isothermal reservoir simulations are needed to optimize buffer
function
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Geological buffering for re-use purposes

When, where and how is geological buffering of interest?

» Evaluation of re-use purposes: is there a need for CO,?
>> Zero-emission horticulture: Greenhouse of the future??
>> Re-use in cement or chemical industry

» Evaluation of CO, sources

» Match temporal supply and demand: mismatch?
Short-term and small scale regulation of supply and demand: surface tanks

Long-term and high scale more expensive geological buffering becomes interesting

» Evaluate potential buffer reservoirs and perform feasibility study
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Questions? Ask me now or email me later: marielle.koenen@tno.nl

ENQOS

Enabling Onshore CO, Storage

WWW.enos-project.eu
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