

INNOVATIVE TOOLS FOR RAPIDLY MAPPING / QUANTIFYING CO_2 LEAKAGE AND DETERMINING ITS ORIGIN

SE Beaubien¹, DG Jones², T Goldberg³, AKAP Barkwith², <u>S Bigi¹</u>, S Graziani¹, KL Kirk², E Mattei⁴, B Mulder³, E Pettinelli⁴, L Ruggiero¹, MC Tartarello¹

¹Dip Scienze della Terra, Sapienza Università di Roma, Rome, Italy
²British Geological Survey (BGS), Keyworth, Nottingham, UK
³Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, Holland
⁴Dip Matematica e Fisica, Roma Tre University, Rome, Italy

Study / test sites

Near-surface geology

- · Latera potassic volcanics
- · San Vittorino carbonates
- · Ailano carbonates
- Fiumicino Tiber river sediments

Gas leakage

• Typically >98% CO_2 , trace CH_4 , H_2S , ...

Leakage pathways

- · Faults and fracture zones
- However, leakage over final interval is often controlled by surface sediments, because most faults are buried

Open path IR lasers (CO₂ and CH₄) - BGS

Mobile system

Mapper – UniRoma1

Sonic Anemometer - BGS

- Methods combine measured parameters and GPS data to map anomalies
- Measurements made every second, giving an along-trace sample spacing of about 1.5 m at normal walking speed
- Mobile results compared with CO₂ and CH₄ flux measurements made on a regular grid
- Interested in spatial resolution, method sensitivity, speed, impact of conditions

Open path IR lasers (CO₂ and CH₄) - BGS

Deployed 20-30cm above ground Fast response with no memory effect

Mobile system

Mapper – UniRoma1

Sonic Anemometer - BGS

Measures 3D wind properties

Static measurements on a gas vent – wind effect

- Placed sytem on gas vent for ~10 minutes to determine temporal variability
- · Good correlation between CO_2 at ground surface and trace CH_4 at 20 cm height
- Much higher Mapper values during low wind speeds
- But even at 4 m/s, Mapper CO_2 is still >1500 ppm

ENOS

Mobile - leakage detection

- Excellent correlation between the two techniques;
- 190 flux measurements took ~10 person hours, mobile system only took 30 minutes

Mapper – leakage quantification

Use Mapper results as a flux proxy, because faster and higher spatial resolution

- An empirical relationship between boundary layer concentrations and point flux values is defined based on limited points representing the total range
- "convert" all Mapper data to flux, and use this to estimate total flux
- At the same time the complete, point flux dataset is also used to estimate total flux
- Initial results yielded a Mapper estimate that was about 60% of the point flux
- development may yield more precise estimate because less interpolation error compared to point measurements

Origin determination – Isotopologues

- formation temperature of CO_2 determines the abundance of CO_2 isotopologue (mass 47), with temperature being controlled by the local geothermal gradient.
- samples collected at all four sites, with the hope that results would differentiate different formation depths.

Origin determination – Isotopologues

- although many samples were analysed, extraction line problems meant that only four yielded acceptable results
- three fall within the T range of average groundwater (13 to 15°C) while one is slightly higher (38°C), instead of expected values >150°C
- resetting of the $\triangle 47$ signal is likely due to re-equilibration of CO₂ with groundwater along its flow path
- results are not promising for the use of this method for CCS monitoring

Origin determination – Stable carbon isotopes

Stable isotope analyses of CO_2 in the soil (60 cm deep) used to separate:

- biogenic CO₂, which typically has ^{δ13}C-CO₂ of -15 to -25‰
- geogenic CO₂, which in Italy typically has values around -1 to +2‰

Compared with CO_2 concentration in the same samples and CO_2 flux on surface

Origin determination – Stable carbon isotopes

Ailano

- 50 m long profile moving away from the core of a strong gas vent (about 9,000 g m⁻² d⁻¹)
- Samples collected every 2 m (note log scale for CO₂ conc. and flux
 - Results show spot and <u>not</u> diffuse leakage
 - Flux goes to baseline in first 15 m, but isotope and CO₂ concentration values approach biogenic levels after about 50 m

Origin determination – Stable carbon isotopes

Ailano

- Direct comparison between CO_2 concentration and $\delta^{13}C-CO_2$
- Above about 7% CO₂ the isotopic values are relatively constant and representative of geogenic end member
- Below 4% CO₂ there is mixing between the geogenic and biogenic end members
- Difficult to determine if lowest value (1.6%, -18‰) represents pure biogenic end member

For information please contact <u>enos@brgm.fr</u> or visit <u>www.enos-project.eu</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653718