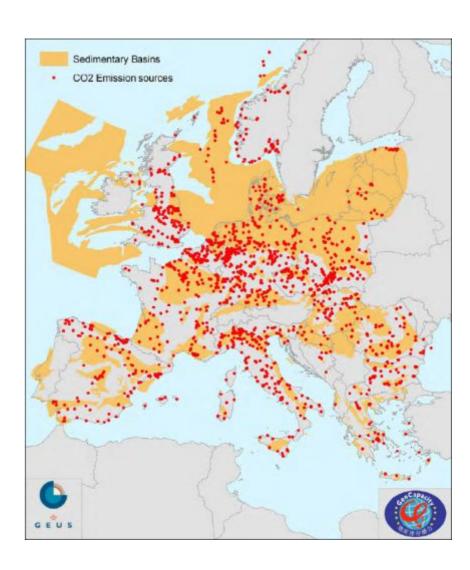
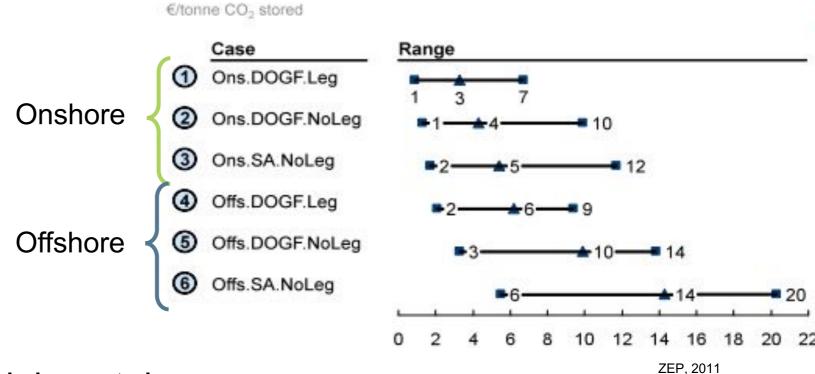


Onshore* storage: Storage at your doorstep

Marie Gastine (CO2Geonet-BRGM, Géodénergies)


Venice Open Forum, 8 May 2019

* Onshore in populated area


Need for CCS onshore

- EU commitment of an overall reduction of greenhouse gas emissions of at least 80% by 2050
- This means storing 3 to 13 billion tonnes of CO₂ across Europe by 2050
- North Sea can provide great and readily available storage potential,

Only a matter of Costs?

Onshore storage is potentially cheaper

But higher uncertainties with higher stakes

Onshore storage: common sense

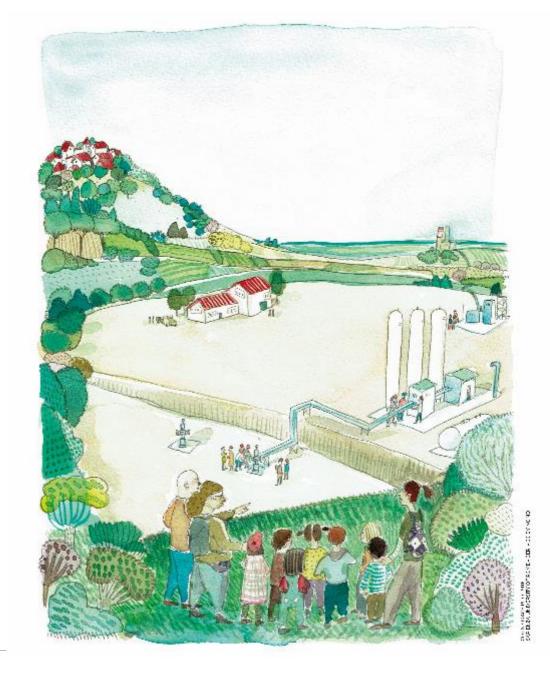
When communicating about CCS:

Common feed-back:

- « It feels like hiding the dust under the carpet »
- « Storing all offshore is like hiding it all where no one can see »
- « Can't we do anything better with CO₂? »

Storing CO₂ at your doorstep can make more sense:

Need onshore storage, relatively near the emission points, to reduce the costs of CCS, but above all enable **territories** to manage their CO2 emissions **locally**, and build lasting **public confidence** in CCS.


Nothing to hide!

Stakes are higher onshore, but

We are all **convinced** that Storage is **safe**

So having storage onshore is necessary, for people to see there is nothing to see

This will give moral license to operate offshore

As of today

All large scale projects onshore Europe were cancelled or stalled due to too high uncertainties:

Geological high costs to explore and characterise potential sites,

Social and political: lack of local support, concerns for safety and environment, no local benefits for storage

Legal and regulation: implementation of the directive, modelling and monitoring, climate policy and incentives

Economical: lack of visibility on CO₂ price, + all above uncertainties

Overcoming the main hurdles to onshore storage

To enable onshore storage we need to:

- Ensure safe operations
- Demonstrate we can manage leakage risks and protect the environment and the ground water
- Lower costs and uncertainties at appraisal stage
- Integrate CO2 storage with local economic activities
- Work together with the local communities
- Prepare next generation scientists and engineers
- Support the emergence of pilots and demos
- Support policy / advocate for CCS incentives

Enabling CO₂ storage onshore in Europe: ENOS Project

- Demonstrating through practical experience that injection operations can be run safely and efficiently onshore, which is key for optimising operations and to enable a positive regulatory environment;
- Ensuring that estimated matched storage capacities are sufficiently reliable and also affordable to verify, which is needed to enable investment in projects and therefore the deployment of CCS;
- Demonstrating our capacity to understand, detect and manage potential leakage risks, which is key for regulatory issues and to demonstrate storage is environmentally sound and safe for human health;
- Integrating CO₂ storage into the local economic activities so that the benefits are also reflected at the local scale, which is vital to enable the deployment of CCS;
- Engaging the local population in the storage projects, without which project development is impossible.

Enabling CO₂ storage onshore in Europe

Create favourable environment for onshore storage across Europe by:

support knowledge sharing to maximise the benefits of site demonstrations,

integrate research results and creating best practices from real-life experiments,

support preparation of new pilot projects and upscaling to demonstration,

bring innovation to society through dialogue and communication, promote CCS through training and education.

Demonstrate safe operations

Further demonstration that:

CO₂ can be injected safely

Technologies and modelling tools to control operations are available

Working on **Pilot**: can test different strategies and « play » with the conditions and parameters to **optimise** injection

Demonstrate leakage management

Release of CO₂ in shallow environment

Demonstration that, in case something goes wrong:

we have adequate monitoring tool portfolio and efficient monitoring strategies

In case of leakage: we know it and can react

Engaging with local communities

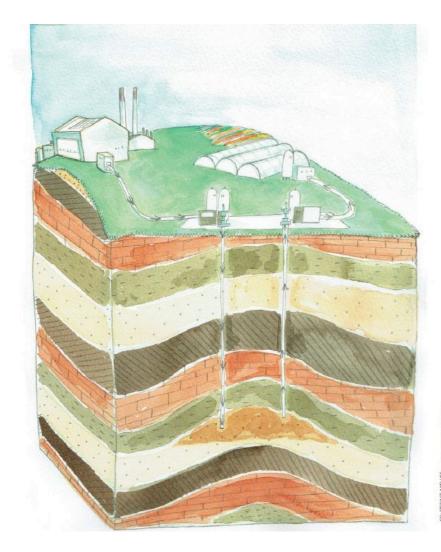
Finding solutions together: direct input of the population to identify the "good conditions" for onshore storage

Exchange between scientists and citizen to make sense of the technology together

Public information tool: an online communication infrastructure for storage pilots

Develop onshore storage: Create local benefit

The development of storage can be beneficial locally by:


- Maintaining /creating Jobs:
 - maintain clean industry and support new markets
 - Providing resources:

H₂, Heat, CO₂, Oil

Complementarity to CCU

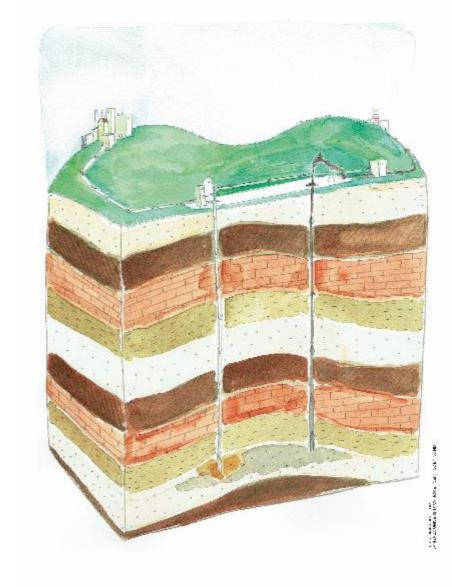
It is key for storage to develop synergies in relation with the local economy. Then storage will make sense for all and not only operators

Example: Buffer storage for CO₂ use

Support seasonal CO₂ buffering concept for use in greenhouses

- > To make efficient use of waste CO₂: match supply and demand
- Support geothermal energy development in horticulture sector

Presentation by Marielle Koenen in session 5


Example EOR

EOR is common in the USA, but not Europe. Business as usual EOR is carbon positive.

Development of joint optimisation of CO₂ Storage (carbon negative) and Oil production (ensure revenues) over time

case study and up scaling on basin scale.

Maintain **local** and « **clean** » production oil and with the related jobs and enable « soft » and flexible transition

Other possibilities

Coupled CCS and geothermal energy production:

heat for district heating or industrial processes

From grey H₂ to blue H₂

support transition from O&G H₂ production

Heat recovery via a heat collector for industrial processes and/or heating CO2 capture and dissolving system incorporated

http://co2-dissolved.brgm.fr/

Other possibilities to be developped

Territorial approach

Every doorstep is different...

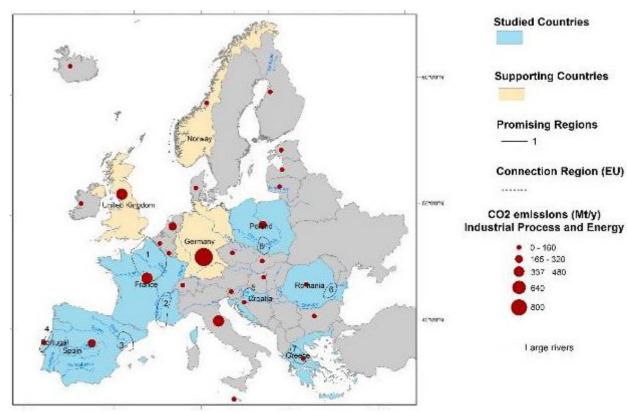
So there should not be one kind of storage

But storage tailored to the local conditions: geological but also economics and social

Need for an integrated approach with onshore storage one of the solutions

Strategy CCUS

New H2020 Project :Strategic planning of Regions and Territories in Europe for low-carbon energy


and industry through CCUS

Coordination and Support Action

STRATEGY-CCUS aims to develop strategic plans for CCUS development in Southern and Eastern Europe in the short term (up to 3 years), medium term (3-10 years) and long term (more than 10 years).

Specific objectives are:

- Elaborate local CCUS development plans, with local business models, within promising start-up regions;
- Develop connection plans with transport corridors between local CCUS clusters, and with the North Sea CCUS infrastructure, in order to improve performance and reduce costs, and contribute to build a Europewide CCUS infrastructure.

Please visit the poster

Conclusion

Offshore and Onshore storage: both part of the solution

Onshore storage

- smaller but integrated with CCUS
- tailored to local context
- making sense to local stakeholders

Key to give us license to operate offshore

Offshore storage will probably provide massive capacities

www.enos-project.eu

