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1 Executive Summary 

Global climate change has been indicated as one of the most significant challenges to be 
addressed by humanity. Given the variety of depleted oil and gas fields and other 
underground reservoirs, CO2 sequestration is considered as one of the most perspective 
techniques for reducing of greenhouse gases concentration in the atmosphere. However, the 
nature of subsurface storage and the high cost of measurements makes it difficult to provide 
a reliable capacity estimate of potential storage site and further quantify the amount of CO2 
that could be safely stored. Therefore, accurate capacity estimation of a potential CO2 
sequestration site is one of the most significant tasks that needs to be addressed for a 
practical large-scale implementation of CO2 underground storage. 
 
The accuracy of CO2 storage capacity estimation and reliable quantification of risk is highly 
dependent on amount of available data and thus additional data collection might be needed 
for most sites which is an expensive procedure for subsurface systems. Therefore, 
optimization procedure could be utilized to balance the cost of measurements and additional 
insights provided by additional collected data. In the present work, the issue concerned is 
addressed via Bayesian experimental design technique. These approaches provides solid 
mathematical formulation of the optimal data acquisition problem.  
 
In the context of the ENOS project funded by the H2020 European program and dedicated to 
the enabling of On Shore CO2 storage, the present work is proposed to developed a smart 
characterization method of data acquisition and used during the elaboration of a CO2 injection 
storage pilot or demonstration site. This report corresponds to the deliverable D2.4 for the 
task 2.2 of the Work Package 2 of the ENOS project. 
 
In a Bayesian experimental design framework, the amount of information provided by a given 
measurement is quantified by comparing the probability distribution of model parameters 
that provide reasonable explanation of the observed data with the prior distribution of model 
parameters. However, the results of measurements cannot be known before those 
measurements are collected. Therefore, averaging over the space of possible measurements 
is performed in order to compute the average or expected amount of information gained 
from the new observations. This procedure seems to be complicated at the first sight. 
However, there exist a variety of numerical methods for calculation of the quantities 
concerned, for instance Markov Chain Monte Carlo methods (MCMC). Therefore, statistical 
theory provides the tool for quantification of the data insights together with algorithms for 
numerical evaluation. 
 
The major challenge in the practical implementation of Bayesian experimental design is the 
associated numerical costs of averaging (i.e. integration) over the possible space of 
measurements. The latter is critical for subsurface problems when flow simulations are 
required for single function evaluation. Here we propose to tackle this problem by replacing 
the expensive numerical flow simulations by a surrogate model. In the present work, this 
approach concerned is adopted and Polynomial Chaos Expansion (PCE) is utilized for 
development of the response surface. 
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Utilization of response surfaces provide a significant speed-up of single expected information 
gain calculation. However, in the majority of practical problems, the ultimate goal is 
optimizing the utility function rather than performing a single value evaluation. Therefore, 
the acceleration provided by replacing the flow simulations with a cheap to evaluate 
surrogate model is not enough to solve the optimal data gathering problem in a reasonable 
time. We propose a novel approach to address this issue, where we construct a PCE response 
surface for the expected information gain without directly evaluating utility function itself. 
 
This novel approach to calculating the expected information gain makes it possible to 
construct a response surface for the utility function at a minimal cost of (<100 function 
evaluations). The response surface developed can be utilized to determine the parameters of 
the optimal experimental design.  
 
The obvious advantage of the proposed methodology is low computational cost of the 
solution for overall optimization problem if compared with direct approach. However, certain 
constraints that limit the applicability of proposed method should be satisfied. First of all, it 
is supposed that measurement errors are independent and normally distributed. These 
constraints impose limitations on the applicability of the method. However, the assumptions 
made are not too restrictive and are satisfied in many practical problems. Therefore, the 
proposed approach to Bayesian experimental design provides a robust technique for 
optimization of data acquisition processes. The methodological guidelines for implementing 
the proposed technique for optimizing the data acquisition process is provided in the 
numerical examples section of this report. 
 
  



ENOS Report | ENOS D2.4 | March 2020    5 
 

 
 

2 Introduction 

2.1 Background 

In recent decades the rapid growth of the temperature that does not fit in with regular climate 
behaviour has been observed [IPCC, 2007]. The reason for the effect concerned is dramatic 
growth of greenhouse gases concentration in the Earth atmosphere [IPCC, 2007]. The 
scientific community is confident that the concentration growth of observed CO2 is caused by 
human activities, and CO2 emissions make a significant contribution to greenhouse gases 
concentration [Bryant, 1997]. 
 
The surface temperature growth could have far reaching consequences to all humankind. The 
latter includes the increase of sea-level followed by flooding of coastal regions [IPCC, 2007], 
forcing significant fraction of Earth population to migrate towards interior parts of the 
continents. In addition to that, temperature growth or global warming could have significant 
impact on the distribution of precipitations [IPCC, 2007]. According to the best knowledge of 
climate mechanisms, such redistribution could make vast regions of the planet too arid or too 
wet and inhabitant. Those consequences of global warming could lead to tremendous social 
tension and conflicts and even question the future of the mankind [IPCC, 2007]. Given the 
scale of consequences of climate change, it is reasonable to take certain measures in order to 
prevent or reduce the impact of global warming. Moreover, it has been indicated that the 
sooner those measures are taken, the less significant would be the impact of the climate 
change [AGU]. 
 
As an immediate response to global temperature growth, subsurface CO2 injection and long-
term storage is considered as one of the potential solutions to global warming. The central 
idea of the approach is to inject CO2 from atmosphere or any other sources into subsurface 
reservoirs that can securely store a given amount of CO2 at the timescale of hundreds or 
thousands of years. 
 
The constraint on the timescale of secure CO2 storage limits the set of possible candidates. 
However, plenty of subsurface reservoir that have a potential to store injected CO2 for 
thousands of years are available all over the world. First of all, there exist a variety of natural 
reservoirs that have been storing CO2 for geological times (millions of years). Secondly, there 
is a huge number of depleted oil and gas reservoirs that have trapped hydrocarbons for 
thousands of years. Therefore, such reservoirs could trap CO2 and prevent it from leaking due 
to the properties of the sealing cap rock. Finally, saline water aquifers can satisfy the timescale 
requirements in the presence of appropriate trapping mechanism. Given the availability of 
well-studied subsurface oil gas and water reservoir, it is possible to successfully implement 
CO2 sequestration technology. 
 
There exist a variety of injection and storage strategies for CO2 sequestration. The most 
common one is to inject CO2 as a supercritical fluid. That allows one to store large amounts 
of CO2 due to high density at that case. At the same time, CO2 occupies all available pore 
volume under super critical conditions like a normal gas. Therefore, the combination of such 
properties at supercritical state is beneficial for Carbon Capture and Storage (CCS) operations. 
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Since CO2 has been injected into a reservoir various physical and chemical processes start to 
affect the distribution of the injected CO2 inside the reservoir rock. Those processes 
determine trapping mechanisms that prevent CO2 from escaping from the reservoir. 
 
At the early stages of the injection, the flow of CO2 is primarily driven by pressure gradients 
and gravity. As a result, CO2 migrates towards the cap rock, where it should be sealed by 
impermeable reservoir rocks. This mechanism is essentially the same as one that keep 
hydrocarbons confined within an oil or gas reservoirs and is referred to as structural or 
stratigraphical trapping. At the very beginning of CO2 injection, this trapping mechanism 
determines the CO2 storage capacity.  
 
During the injection, CO2 displaces water inside the reservoir pore space. After stopping the 
injection, water starts to occupy the left pore space in the imbibition-like process. In such 
case, a certain fraction of CO2 is trapped by capillary forces. This mechanism is referred to as 
residual trapping. The efficiency of this process is largely determined by the chemical 
composition of subsurface water and reservoir rocks. It is clear that the mechanism 
concerned has larger time scale in comparison to structural and stratigraphical trapping and 
that it starts to affect the distribution of CO2 only after the injection has stopped. 
 
Structural and residual trapping are known as physical trapping mechanisms, because their 
efficiency is determined by physical effects like buoyancy and capillary forces. Various 
chemical processes contribute to CO2 storage capacity as well. For instance, dissolution of CO2 
in brine or absorption by reservoir rocks effectively capture and immobilize injected CO2. This 
mechanism is referred to as solubility trapping. In addition to that, injected CO2 could react 
chemically with minerals that form solid matrix of the reservoir. As a result of the reactions, 
CO2 precipitates as solid carbonate mineral. This mechanism provide the most secure form of 
the CO2 storage. 
 
The operational time scale varies significantly over the trapping mechanisms. For example, 
during the injection of CO2, structural and stratigraphical trapping is the primary mechanism 
that determines the capacity of the storage site. The time scale of this process ranges from 
years to decades, which is a typical lifetime of an active injection phase. After the termination 
of the injection, residual trapping mechanism affects the CO2 distribution at the timescale of 
dozens of years. At the time scale of centuries, significant amount of CO2 is could be dissolved 
in subsurface fluids and brine. Finally, at the time scale of thousands of years, chemical 
reaction with reservoir rocks immobilize significant amount of injected CO2. The contribution 
of each of these mechanisms to overall storage capacity at different moments of time is 
demonstrated on Figure 1a [Bachu, 2008]. 
 
It has been mentioned that CO2 trapping mechanisms vary significantly in terms of timescale. 
In addition to that, maximal amount of CO2 that can be stored varies significantly among the 
trapping mechanism. Typically, slower processes have higher potential capacity as it can be 
seen on Figure 1b [Bachu, 2008]. However, the exact magnitude of the CO2 amount that can 
be potentially stored is highly sensitive to the geometry of the reservoir, chemical 
composition of reservoir brine and reservoir rocks and other factors [Bachu, 2008]. It is 
important to note that the overall capacity is determined mainly by the structural or 
stratigraphical trapping mechanism [Bachu, 2008]. due to high contrast in speed of physical 
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and chemical processes that determine CO2 distribution in the reservoir. However, the 
interplay between different mechanisms reduces the possible risks of CO2 leakage over time 
due to dissolution of mobile CO2 in subsurface fluid or due to chemical reactions with minerals 
of surrounding rocks. 
 
The variety of candidate sites for CO2 sequestration, availability of technology for injection of 
CO2 make CO2 sequestration one of the most powerful tools for mitigating climate change 
effects. However, there exist certain risks for human population and environment associated 
with subsurface CO2 storage. 
 
 The major risk related to CO2 sequestration projects is associated with leakage of CO2 back 

to the atmosphere. First of all, the leakage of CO2 can devalue the effort put in the injection 
of the CO2 and make the whole project meaningless. Secondly, leakage from CO2 storage 
could have far reaching consequences for people and ecology. For instance, massive CO2 
leakage could result in significant concentrations of CO2 on the surface and lead even to death 
of small animals and people due to the asphyxia [Bachu, 2008]. Minor but continuous leakage 
of CO2 can significantly change the pH of the underground water and cause an increase of 
concentration of different heavy metals in the water, making it impossible to utilize that 
source of water for human needs. Therefore, mitigating potential leakages from CO2 storage 
and careful observation of the storage state after the injection of CO2 are of primary 
importance to CCS projects. 
 
One of the most common leakage mechanisms is CO2 migration through fractures in the cap 
rock. Those fractures can occur because of high pressure of the injected CO2 or due to 
chemical reactions that lead to either increase of the pressure of the injected fluid or to 
weakening of the sealing cap rock [Miocic et al., 2013]. The alternative source of leakage is 
represented by abandoned wells when storing CO2 is in depleted hydrocarbon reservoirs. 
Such leakage could be caused by fractures in the cap rock that develop during the drilling or 
through the fractures in the cemented region around the well. Those risks could be accessed 

 
Figure 1: Time scale for different trapping mechanisms (a) and fractions of trapping mechanisms in the overall 
storage capacity (b) [Bachu, 2008]. 
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through careful analysis of the available data prior to CO2 injection and by regular monitoring 
of the reservoir state during the lifetime of the CCS project [Furre et al, 2017]. 
 
In summary, CO2 sequestration can be considered as one of the most powerful tools to 
address the climate change issues in a timely manner. Numerous depleted oil field and saline 
aquifers all over the world could be utilized for that purposes. Therefore, significant amount 
of atmospheric CO2 can be stored in subsurface reservoirs. However, there exist certain risks 
associated with CO2 sequestration that should be carefully accessed for success of CO2 
sequestration projects. 
 
2.2 Smart site characterization 

Given the high overall cost of the industrial scale CO2 sequestration and potential hazards of 
CO2 leakage, accurate estimate for storage capacity and risk assessment is required. Different 
studies indicate that this issue can be addressed mainly via refining the knowledge about the 
reservoir by collecting data from various sources [CO2CRC, 2008; DNV, 2009; NETL, 2010; 
SiteChar, 2013; Bachu, 2015; Heidug, 2013]. For instance, in the case of depleted oil and gas 
fields well-log seismic and production data are available along with the reservoir model. 
However, possible chemical reactions of CO2 with reservoir fluids and rocks should be 
analyzed along with the state of the abandon wells and condition of the cap rock [Bachu 
2008]. Moreover, additional measurements of fluid and rock properties could be required in 
order to provide accurate estimate for CO2 storage capacity. The latter can be illustrated by 
the Sleipner project, where the CO2 distribution caused by residual trapping mechanism was 
not fully understood for several decades [Anne-Kari Furre et al 2017]. In the case of the CO2 
sequestration in the saline aquifers significant amount of measurements should be conducted 
in order to build accurate reservoir model [Bachu 2008]. The latter requires drilling of 
exploratory wells and seismic measurements. Therefore, data acquisition is an essential step 
in the site characterization for CO2 sequestration. 
 
Variety of methods are available for gathering information about subsurface reservoir. The 
latter include, drilling of new wells, well test measurements from existing wells, seismic 
surveys with different resolutions among other sources of data. All of those techniques vary 
significantly in cost, duration of the measurements and amount of the information provided. 
Therefore, in order to maximize the information that can be obtained using that various of 
tools under a given set of financial constraints, the utilization of an optimization-based 
approach is required. In other words, the problem of data acquisition and site 
characterization can be naturally transferred to an optimization problem of the experimental 
design. 
 
In the present work Bayesian optimal experimental design is utilized to optimize data 
acquisition plans. Bayesian experimental design is a probabilistic approach for optimization 
of the objective function related to the information about any given physical system. For 
example, Bayesian experimental design has been successfully applied to minimization of 
variance of model parameters or predicted values and to the maximization of the information 
gain itself. The main advantage of the approach is that it provides a streamlined workflow for 
combining various sources of information within a single optimization routine. In other words, 
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the method is generic and flexible enough to be easily adopted to almost any data acquisition 
framework. 
 
2.3 The scope of the project 

The main challenge in utilization of Bayesian experimental design is associated with high 
computational cost. Even a single calculation of the objective function could be quite 
expensive due to the high dimensional integrals that are the essence of the method 
concerned. Therefore, the main focus of the present work is to develop efficient numerical 
schemes with low run-time to optimize data acquisition plans. This issue is addressed through 
the utilization of surrogate modelling techniques.  
 
First of all, Polynomial Chaos Expansion (PCE) is utilized in order to replace the flow simulators 
used to estimate the gained knowledge given an observations. That measure allows one to 
significantly reduce the time needed for objective function evaluation, which is in the same 
line with the latest research papers on that subject. The construction of PCE surrogate is 
explained in the Section 4. 
 
In addition to the PCE surrogate for flow simulations, PCE based response surface has been 
developed to fit the objective function directly. This response surface is constructed with a 
novel technique that derives the response surface for the objective function from the values 
of the related quantities. In other words, the response surface for the objective function is 
constructed without even a single computation of the objective function. The overall 
computational cost of response surface construction is comparable with dozens of single 
value calculations. The latter allows one to solve the optimize the data acquisition process at 
the cost of few function evaluations which is orders of magnitude faster that any direct 
approach. The latter is the principal result of the project. The details of the novel approach 
are explained in the Section 5. 
 
Finally, numerical examples that demonstrate the overall workflow of data acquisition 
optimization for subsurface flow problems is presented in the Section 6. 
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3 Bayesian experimental design 

3.1 Overview 

Inverse problems have been playing significant role in engineering and research in the last 50 
years. The ultimate goal in such type of problems is to get certain insights about any given 
system based on the observed data or measurements. Commonly, it is supposed that the 
given system is approximated by a mathematical model with finite number of parameters. In 
addition to that, a functional relation between model parameters 𝜃𝜃 and results of 
measurements 𝒎𝒎 is formulated as: 
 
  (1) 
 
Where 𝒅𝒅 is the set of parameters that determines the experimental setup for data collection 
and 𝜂𝜂 represents the measurements noise. Equation (1) implies that modeled system can be 
approximated with finite number of parameters. Such constraint does not limit applicability 
of the approach in the case of subsurface flow problems, where the spatial distribution of 
porosity and permeability are unknown. For most of practical problems, the distribution of 
porosity and permeability admits reasonable finite-dimensional approximation via Karhunen-
Loeve (KL) expansion. Therefore, all the machinery developed for the systems described by 
Eq. (1) can be fully applied to subsurface flow problems and to optimization of data 
acquisition for CO2 sequestration.  
 
Methods for solution of inverse problem as formulated by Eq. (1) have a long history of 
development. The solution of the inverse problem heavily relies on the adopted approaches 
for data gathering. A variety of techniques for experimental design have emerged to address 
different challenges related to data collection. Historically, the first issue that have been 
addressed is the appropriate coverage of the design parameter space in order to guarantee 
that models with different parameters can be distinguished by collected data up to a specified 
tolerance. The most common approach that addresses this challenge is Full Factorial Design 
[Montgomery et al., 2012]. That method allows one to infer model parameters with 
reasonable accuracy. However, the cost of the method grows relatively fast with the problem 
dimension. In order to tackle the dimensionality issues, methods like Fractional Factorial 
Design [Montgomery et al., 2012], Latin Hypercube [McKay et al., 1979], Box-Brenken [Box et 
al., 1963] and Plackett-Burman [Plackett et al., 1946] designs have been proposed. Those 
methods significantly reduce the overall costs of model parameters inference without 
essential loss in accuracy when compared to Full Factorial Design. However, these methods 
of experimental design do not provide optimal scheme of measurements. Therefore, the 
accuracy of the inferred model parameters could be further improved by optimizing the 
experimental design 𝒅𝒅. 
 
One of the natural techniques towards optimization of experimental design is to minimize the 
variance of inferred model parameters or model predictions at any given set of points [Vanlier 
et al., 2012]. These methods can be considered as particular case of Bayesian experimental 
design when the model parameters or model predictions are assumed to be normally 
distributed. The latter typically holds for accurate measurements that allow to infer model 
parameters with high precision [Miler et al., 1995]. Unfortunately, high-precision 
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measurements are not always available especially in the case of subsurface flow problems 
where both the cost of data gathering and dimension of model parameters space is high. 
Therefore, more generic and robust Bayesian approach is utilized as more appropriate tool 
for reaching the goals of the ENOS project. 
 
There exist a variety of Bayesian experimental design schemes depending on the objective 
function of concern [Mosbach et al., 2012; Roshan, 2012]. In the present report, D-optimality 
criterion is considered. In that approach, the amount of information regarding the model 
parameters is maximized by tuning the design parameters 𝒅𝒅. More precisely, in any single 
experiment the information from all the measurements is quantified through the difference 
between the prior distribution of model parameters and the posterior distribution of the 
model parameters conditioned to the given observations 𝒎𝒎 and design 𝒅𝒅. However, the 
actual value of observed data  is not known before the experiment is conducted. Therefore, 
different experimental schemes are ranked by the objective function in D-optimal 
experimental design, which is computed as an average value of information gain over the 
space of possible experimental outcomes. The mathematical details of this idea are 
summarized below. 
 
In a Bayesian setting, the model parameters are distributed in agreement with a prior 
distribution: 
 
  (2) 
 
Where 𝑝𝑝(𝜃𝜃|𝒅𝒅) and 𝑝𝑝(𝜃𝜃) are probability density distributions with respect to the model 
parameters 𝜃𝜃. In the present work, it is supposed that prior distribution does not depend on 
parameters of experimental design, which is reflected in the Eq. (2). Typically, one of the 
tabular distributions (aka. uniform or normal) is utilized as a prior distribution. In the present 
work, the reparametrization of the model parameters is utilized in order to work with 
variables with a well-known probability distribution. Given the prior distribution of model 
parameters and observation 𝒎𝒎, Bayesian theorem for conditional probabilities can be utilized 
in order to derive the expression for the posterior distribution of the model parameters: 
 
  (3) 
 
Where 𝑝𝑝(𝜃𝜃|𝒎𝒎,𝒅𝒅) is the density of the posterior distribution, 𝑝𝑝(𝒎𝒎|𝒅𝒅) is the density 
distribution of observations 𝒎𝒎 for a given experimental design 𝒅𝒅 and 𝑝𝑝(𝒎𝒎|𝜃𝜃,𝒅𝒅) is the density 
of probability distribution of observing  for a given model parameters 𝜃𝜃 and design 𝒅𝒅 or 
likelihood. It is natural to assume that the difference between model predictions and 
observed data follows a normal distribution: 
 

  (4) 

 
Where σ is the standard deviation and dim (𝒎𝒎) is the dimension of the observed data. Given 
the form of prior and the likelihood, the equation for 𝑝𝑝(𝒎𝒎|𝒅𝒅) can be derived as a 
normalization factor for the integral of prior distribution and likelihood: 
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  (5) 

 
Therefore, all the necessary ingredients are available in order to estimate the posterior 
distribution using: 
 
 

  (6) 

 
The information inferred about the model parameters is quantified via Kullback-Leibler 
divergence [Kullback et al., 1951] between prior and posterior distributions of the model 
parameters [Huan et al., 2013]: 
 

  (7) 

 
Finally, averaging with respect to all possible experimental results is computed: 
 

  (8) 

 
Where 𝑈𝑈(𝒅𝒅) is the expected information gain or the utility function that is maximized with 
respect to 𝒅𝒅 in order to determine the parameters of the experiment as following: 
 
  (9) 
 
3.2 Numerical integration and Bayesian experimental design 

In optimal Bayesian experimental design, the expected information gain 𝑈𝑈(𝒅𝒅) is maximized 
in order to determine the optimal experimental setup. According to Eq. (5) and Eq. (8), the 
calculation of a single value of the utility function requires sequential multiple integrations. 
First of all, 𝑝𝑝(𝒎𝒎|𝒅𝒅) requires integration over the space of model parameters 𝜃𝜃, for instance, 
like in the Eq. (5). Secondly, 𝑈𝑈(𝒅𝒅) is computed as the integral of KL-divergence over the space 
of possible experimental outcomes  with respect to probability distribution 𝑝𝑝(𝒎𝒎|𝒅𝒅). In 
certain cases, it possible to compute the integrals concerned analytically [Roshan, 2012]. 
However, for generic cases, the functions involved in the integration could be highly non-
linear. Therefore, only numerical integration is feasible. 
 
There exist a variety of techniques for numerical calculation of 𝑝𝑝(𝒎𝒎|𝒅𝒅) and 𝑈𝑈(𝒅𝒅) [Zhang et 
al., 2016]. Most common are approximations of the probability distribution of interest by 
normal distribution [Mosbach et al., 2012]. However, such methods have limited applicability 
because of strong underlying assumptions about the probability distribution [Miler., 1995]. In 
the case of subsurface systems, it is quite challenging to justify that the probability 
distribution of quantities of interest are close to the normal distribution. Therefore, universal 
Markov Chain Monte Carlo (MCMC) integration technique is utilized in order to enhance the 
robustness of the approach and to expand the range of problems that can be solved. 
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In MCMC methods, the integral of a given function 𝑔𝑔(𝒙𝒙) is approximated as the mean of 
functions values at finite number of points called Markov Chain: 
 

  (10) 

 
Where 𝑝𝑝(𝒙𝒙) is a certain probability distribution and  is integrable function, 𝒙𝒙𝑖𝑖 are points 
in ℝ𝑛𝑛and 𝑖𝑖 is the index that ranges from 1 to the total number of sampled points 𝑁𝑁. The 
essence of MCMC techniques is sampling of points  in order to provide accurate estimate 
of the integral in Eq. (10). 
 
There exist a variety of techniques for generating the set of 𝒙𝒙𝑖𝑖, like Metropolis-Hastings 
algorithm [Hastings, 1970], Gibbs sampling technique [Gelfand, 1990] and Hamiltonian 
MCMC [Neal, 2011]. In the present work, Metropolis-Hastings approach is utilized as it 
provide a good balance between robustness and complexity of implementation. In 
Metropolis-Hastings algorithm, the set of 𝒙𝒙𝑖𝑖 is generated sequentially via a Markov process 
[Gelman et al., 2014]. The latter is a two-step procedure of generating a proposal for 𝑥𝑥𝑖𝑖+1 
followed by an acceptance or rejection step of the proposed point. This procedure is entirely 
local and is determined by the current state 𝒙𝒙𝑖𝑖. At the first step, a value for 𝑥𝑥𝑖𝑖+1 is proposed 
via sampling of the displacement 𝛿𝛿𝒙𝒙: 
 
  (11) 
 
Typically, that shift 𝛿𝛿𝒙𝒙 of 𝒙𝒙𝑖𝑖 is sampled from a tabular distribution. In the present work, a 
normal distribution 𝒩𝒩(0,𝜎𝜎MH) with zero mean and standard deviation 𝜎𝜎MH is utilized for 
generation of 𝛿𝛿𝒙𝒙. The parameter 𝜎𝜎MH is tuned in agreement with best practices of MCMC 
applications [Gelman et al., 2014]. 
 
Since the proposal has been generated, values of the probability density distributions are 
computed at the proposed 𝑝𝑝(𝒙𝒙′) and the initial point 𝑝𝑝(𝒙𝒙𝑖𝑖). The decision regarding the 
acceptance or rejection of a new sample is made based on relative value of those values: 
 

  (12) 

 
Where 𝑟𝑟 denotes the ratio of the probability density functions. If 𝑟𝑟 ≥ 1, then the proposed 
sample is accepted, and generated sample is added to the chain 𝒙𝒙𝑖𝑖+1 = 𝒙𝒙′. Otherwise, a 
random real number 𝜁𝜁 is sampled from the uniform distribution on the unit interval U[0; 1]. 
If 𝜁𝜁 ≤ 𝑟𝑟 then the proposed sample is accepted and 𝒙𝒙𝑖𝑖+1 = 𝒙𝒙′. Otherwise, the sample is 
rejected and the current point  is added to the chain 𝒙𝒙𝑖𝑖+1 = 𝒙𝒙𝑖𝑖. This step can be 
schematically represented as follows: 
 

  (13) 
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It is worth to mention that generating a Markov Chain with the Metropolis-Hastings algorithm 
only requires the ratio of the probability density functions. Therefore, the algorithm 
concerned can be naturally utilized for unnormalized distributions.  
 
The initial point 𝒙𝒙1 can be sampled randomly from any reasonable distribution. In order to 
exclude dependence on the initial state of the Markov Chain, first several elements of the 
chain are not considered in the calculation of the integral Eq. (10). This part of the MCMC 
chain is referred to as burn-in phase [Gelman et. al., 2014]. In the present work, 20% of the 
chain is utilized as a burn-in and the integral in Eq. (10) is approximated with the remaining 
part of the chain. 
 
There exist several numerical techniques that utilize MCMC for calculating the Bayesian 
evidence factor Eq. (5) and the expected information gain Eq. (8). The most common MCMC 
method for computation of Bayesian evidence factor utilize the following representation of 
the 𝑝𝑝(𝒎𝒎|𝒅𝒅): 
 

  (14) 

 
Here, the Markov Chain of the model parameters is sampled from the prior distribution 
𝑝𝑝(𝜃𝜃|𝒅𝒅). The advantage of this technique is simplicity. However, there is a possibility of 
convergence issues if the posterior distribution is very narrow [Schniger, 2014]. The issue with 
narrow posterior distribution is tackled with an alternative representation of Bayesian 
evidence factor: 
 

  (15) 

 
Where the samples 𝜃𝜃𝑖𝑖  are generated from the posterior distribution. The advantage of this 
approach is the sensitivity to regions with high density of posterior distribution, that make 
the most significant contribution to the integral in the Eq. (15). However, certain numerical 
issues arise from samples that are sampled from regions with low density of the likelihood. 
The latter could cause significant bias in MCMC estimate for Bayesian evidence factor 𝑝𝑝(𝒎𝒎|𝒅𝒅) 
[Schniger, 2014]. 
 
The approach for calculation of the Bayesian evidence factor as done in Eq. (14) is transferred 
directly to calculating the objective function 𝑈𝑈(𝒅𝒅). In this case, elements of MCMC chain are 
generated from 𝑝𝑝(𝒎𝒎|𝒅𝒅), which is computed directly with a MCMC at each 
acceptance/rejection step. Therefore, 𝑈𝑈(𝒅𝒅) is approximated as follows: 
 

  (16) 

 
Where 𝑁𝑁 is the length of MCMC chain and it is tuned in order to achieve the required degree 
of accuracy. It is well-known that MCMC estimate for the integral in the Eq. (10) convergence 
to the exact value as 1 √𝑁𝑁⁄ : 
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  (17) 

 
This convergence rate is not very high. Therefore, sufficiently long Markov Chains should be 
utilized in order to meet accuracy requirements. Numerical experiments demonstrate that 
Markov Chains of length from 10,000 to 50,000 provide sufficient accuracy for calculating 
both the expected information gain 𝑈𝑈(𝒅𝒅) and Bayesian experimental design 𝑝𝑝(𝒎𝒎|𝒅𝒅). 
Therefore, the calculation of single value of the objective function requires at least 10,000 
evaluations of 𝑝𝑝(𝒎𝒎|𝒅𝒅) and each of those values requires at least 10,000 evaluations of the 
model functions 𝑓𝑓(𝜃𝜃,𝒅𝒅), which requires a run of a flow simulator. Therefore, the computation 
of a single value of objective function is a computationally expensive procedure. Moreover, 
the general optimization of 𝑈𝑈(𝒅𝒅) is not feasible. In order to tackle that issue, surrogate 
models are utilized to replace flow simulator. 
 
In addition to that, we propose to develop a Polynomial Chaos Expansion (PCE) based 
response surface for the objective function 𝑈𝑈(𝒅𝒅) directly. This novel approach admits further 
reduction of the computational cost by the construction of an accurate surrogate model for 
𝑈𝑈(𝒅𝒅) at the cost of several dozens of function evaluation. The details of this novel approach 
are described in Section 5. 
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4 Polynomial Chaos Expansion 

4.1 Introduction 

PCE is a popular technique for surrogate modelling and function approximation as a series of 
orthogonal polynomials (e.g. Hermite, Legendre, Chebyshev and etc.) [Weiner, 1938]. The 
method has a high convergence rate especially when approximating smooth functions. In 
addition to that, statistical analysis of the data can be significantly simplified if PCE surrogate 
model has been developed [Blatman et al., 2011]. For instance, mean, variance and Sobol' 
sensitivity indices can be computed directly from the PCE coefficients [Kaintura et al., 2018]. 
Such properties of PCE made it quite popular for sensitivity analysis and uncertainty 
quantification. In the case of data acquisition optimization, the latter features of PCE provide 
a compelling reason for the utilization of PCE in this project. 
 
Remarkable properties of PCE for statistical analysis and uncertainty quantification are 
attributed by the relation between family of orthogonal polynomials and the statistics of the 
input data. In PCE framework, it is assumed that input parameters  are distributed according 
to probability distribution with density K(𝒙𝒙) . Therefore, the inner product of two square-
integrable functions 𝑓𝑓1(𝒙𝒙) and 𝑓𝑓2(𝒙𝒙) can be naturally introduced as: 
 

  (18) 

 
Given the density of probability distribution K(𝒙𝒙) and associated inner product, the family of 
orthogonal polynomials can be constructed via Gram-Schmidt orthogonalization process 
[Abramowitz, 1964] applied to the polynomial function of the following form: 
 
  (19) 
 
Where 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 are non-negative integer numbers, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 are components of the 𝑛𝑛-
dimensional vector 𝒙𝒙. Therefore, for a family of orthogonal polynomials can be naturally 
associated with a probability distribution. Hence, PCE series can be formed for any given 
square-integrable function 𝑓𝑓(𝒙𝒙): 
 

  (20) 

 
where 𝐴𝐴 is an index of PCE or polynomial basis function 𝑝𝑝𝐴𝐴(𝒙𝒙) and 𝑐𝑐𝐴𝐴 is the corresponding 
expansion coefficient. Due to utilization of Gram-Schmidt orthogonalization process, PCE 
basis functions 𝑝𝑝𝐴𝐴(𝒙𝒙) satisfy the following constraint: 
 

  (21) 

 
Where 𝐴𝐴 and 𝐵𝐵 are multi-indices of PCE basis functions and 𝛿𝛿𝐴𝐴𝐴𝐴is a Kronecker symbol. In the 
present work, the following normalization of PCE basis functions is utilized: 
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  (22) 
 
Gram-Schmidt orthogonalization process allows one to develop PCE formalism for almost any 
arbitrary probability distribution or kernel function 𝒦𝒦(𝒙𝒙) with finite moments of any order. 
However, in most applications certain assumptions regarding the statistics of the input data 
are made. The most common one is that the components 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 of the input parameters 
vector 𝒙𝒙 are mutually independent. This assumption does not limit the applicability of PCE, 
because different transformation technique could be utilized to map the data to a space with 
mutually independent parameters [Rosenblatt, 1952]. Moreover, it is possible to adjust the 
transformation in such a way that independent parameters have a tabular distribution. 
Therefore, in the present work, only uniform distribution 𝒰𝒰[−1; 1] are considered. In that 
case, the density of probability distribution is expressed as: 
 
  (23) 
 
Where 𝒦𝒦𝑎𝑎(𝑥𝑥𝑎𝑎) is a density function of the probability distribution for  (uniform or normal 
distribution). It can be shown that in such setting, polynomial basis functions are expressed 
as products of single-variate PCE basis functions constructed for each of the factors in Eq. 
(18): 
 
  (24) 
 
Here 𝐴𝐴 = {𝛼𝛼1, … ,𝛼𝛼𝑛𝑛} is a multi-index of the basis function, 𝑝𝑝𝛼𝛼𝑘𝑘

(𝑘𝑘)(𝑥𝑥𝑘𝑘) is PCE basis function of 
degree 𝛼𝛼𝑘𝑘 associated with the kernel 𝒦𝒦𝑘𝑘(𝑥𝑥𝑘𝑘) . It is simple to show that 𝑝𝑝𝛼𝛼𝑘𝑘

(𝑘𝑘)(𝑥𝑥𝑘𝑘) are Legendre 
polynomials for 𝒰𝒰[−1; 1] and Hermite probabilistic polynomials for 𝒩𝒩(0; 1) [Abramowitz, 
1964]. Therefore, in the present work products of Legendre and Hermite polynomials are 
utilized for surrogate modelling. 
 
4.2 Polynomial chaos expansion and statistical moments 

The general idea for calculation of variance and different sensitivity indices with PCE is not 
sensitive to particular type of orthogonal polynomials utilized for construction of PCE-basis 
function. Therefore, sensitivity indices can be computed analytically without any Monte Carlo 
simulations for any kernel 𝒦𝒦(𝒙𝒙) as long as the assumption about mutual independence of 
parameter vector components Eq. (22) holds. Technique utilized for such kind of calculations 
plays important role in the developed approach for Bayesian experimental design. Therefore, 
it is explained in details in the current section. 
 
Regardless of the family of orthogonal polynomials, the routine for sensitivity analysis and 
uncertainty quantification is essentially the same. For instance, mean value of the function 
𝑓𝑓(𝒙𝒙) is given by constant term in PCE: 
 

  (25) 

 
Where 𝔼𝔼[𝑓𝑓] is the mean or expected value of 𝑓𝑓, 𝑐𝑐0 is the notation for PCE coefficient with 
multi-index 0, … ,0. similar technique can be utilized for calculating the variance of 𝑓𝑓: 
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  (26) 

 
Given the orthogonality of basis functions Eq. (21), the variance of  can be computed as 
follows: 
 

  (27) 

 
Calculation of the partial variances and Sobol' indices is slightly more technically involved, but 
it follows the same lines as the variance calculation in Eq. (25) and Eq. (26). First of all, partial 
variance of 𝑓𝑓 is defined as the function variance averaged with respect to some of the 
coordinates. In other words, if 𝑟𝑟1, . . , 𝑟𝑟𝑛𝑛 is a reordering of 1, … ,𝑛𝑛, for any 𝑚𝑚 from 1 to 𝑛𝑛 the 
following function can be defined: 
 

  (28) 

 
Given the PCE expression of 𝑓𝑓, it is simple to demonstrate with arguments identical to 
derivation of Eq. (24), that PCE series of 𝑓𝑓𝑡𝑡1,…,𝑟𝑟𝑚𝑚(𝒙𝒙) have the following form: 
 

  (29) 

 
In other words, the PCE series for 𝑓𝑓𝑟𝑟1,...𝑟𝑟𝑚𝑚 are formed by those polynomials of PCE series for 
𝑓𝑓(x) that have degree zero with respect to 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛. This set of indices is denoted as  in 
order to simplify the notations. Given the above definition of 𝑓𝑓𝑟𝑟1,…,𝑟𝑟𝑛𝑛, the partial variance of 𝑓𝑓 
can be computed as the variance of 𝑓𝑓𝑟𝑟1,…,𝑟𝑟𝑚𝑚 : 
 

  (30) 

 
It is simple to show that regular variance of 𝑓𝑓 is related to partial variances via the following 
relation: 
 

  ( 31) 

 
Therefore, partial variances of 𝑓𝑓 are typically normalized and considered as Sobol' sensitivity 
indices: 
 

  (32) 

 
Here 𝑆𝑆𝑟𝑟1,…,𝑟𝑟𝑚𝑚 is Sobol' sensitivity index that measures contribution of the interaction of 
𝑥𝑥𝑟𝑟_1, … , 𝑥𝑥𝑟𝑟𝑚𝑚 to the overall variance of the function. Therefore, the strength of interaction 
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between different model parameters can be quantified through Sobol' indices. It should be 
noted that those indices are computed analytically if PCE is utilized. In the case when 
alternative response surface is utilized, Sobol' indices are computed numerically with Monte 
Carlo simulations. The latter requires large number of function evaluation due to exponential 
growth of the overall number of sensitivity indices with the dimension of the problem. 
 
4.3 Numerical methods for polynomial chaos expansion 

In the present work, PCE coefficients are computed numerically, based on the known values 
𝑦𝑦𝑖𝑖 of function 𝑓𝑓(𝒙𝒙) at finite number of points 𝒙𝒙𝑖𝑖, where 𝑖𝑖 = 1, … ,𝑁𝑁. For that purpose, a 
regression approach has been adopted for truncated PCE series in Eq. (19) so that polynomials 
of degree less or equal to a given 𝑑𝑑 are considered. The degree of polynomial functions is 
tuned to provide the highest accuracy without overfitting the data. Given the PCE truncation 
scheme, the vector of PCE coefficients 𝒄𝒄 can be computed via minimization of the mean-
square error functional: 
 

  (33) 

 
It is well-known that direct minimization of the mean-square error could provide unstable 
solution or a response surface that is not accurate at the points outside the training data. 
Therefore, Elastic Net [Mol et al., 2009] regularization techniques is utilized. Therefore, PCE 
coefficients are computed as the solution of the following minimization problem: 
 
  (34) 
Where 𝜆𝜆1 and 𝜆𝜆2 are hyperparameters that are computed via cross-validation and |𝒄𝒄|1 and 
|𝑐𝑐|2 are the ℓ1 and ℓ2 norms of 𝒄𝒄, respectively.  
 
The minimization problem in Eq. (34) is solved with coordinate-descent algorithm [Hasite et 
al., 2010] implemented in scikit-learn library [Pedregosa et al., 2011]. The implemented PCE 
technique has been naturally integrated with the scikit-learn library enabling the use of PCE 
in any machine-learning pipeline allowing one to combine different regression methods and 
cross-validation techniques. 
 
5 Polynomial chaos expansion for Bayesian experimental design 

In the present work PCE is utilized in Bayesian experimental design in two ways. The first one 
follows classical techniques for Bayesian experimental design. In this approach, model 
function 𝑓𝑓(𝜃𝜃,𝒅𝒅) from Eq. (1) is approximated with PCE surrogate model. In the scope of CO2 
sequestration and data gathering optimization such approximation makes it possible to 
replace a run of the flow simulator by an evaluation of a polynomial function, which is 
dramatically faster. Therefore, surrogate modeling significantly reduces the computational 
cost of evaluating 𝑈𝑈(𝒅𝒅) and makes it feasible to perform Bayesian experimental design for 
the highly non-linear systems of subsurface reservoirs. Secondly, PCE serves as a fundamental 
tool to approximate the utility function 𝑈𝑈(𝒅𝒅). This technique allows one to compute a 
response surface for 𝑈𝑈(𝒅𝒅) at the cost of several dozens of function evaluations, which is 
critical for the optimization routine. 
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The proposed approach utilizes the reparametrization trick that is essentially the same as one 
utilized to derive the objective function for variational autoencoders [Welling et al., 2019]. In 
Eq. (8) the expected information gain is represented as an expected value of the KL-
divergence: 
 

  (35) 

 
Bayesian evidence factor can be computed as an averaged likelihood over the prior 
distribution of model parameters Eq. (5). Therefore, the following equation for 𝑈𝑈(𝒅𝒅) is valid: 
 

  (36) 

 
It is useful to rewrite the equation for 𝑈𝑈(𝒅𝒅) as repeated integration over 𝒎𝒎 and 𝜃𝜃: 
 

  (37) 

 
In the present work, we assume that the vector of measurements is combined with the model 
predictions and normally distributed error Eq. (4). Therefore, 𝒎𝒎 can be substituted as 
𝑓𝑓(𝜃𝜃,𝒅𝒅) +  𝜂𝜂 inside the inner integral in Eq. (36): 
 

  (38) 

 
In the inner integration, the vector of model parameters 𝜃𝜃 is constant. Therefore 𝑈𝑈(𝒅𝒅) can 
be computed as following: 
 

  (39) 

 
The error of measurements is normally distributed. Therefore, the likelihood function in the 
Eq. (38) can be replaced by density of normal distribution: 
 
  (40) 
 
Here 𝒩𝒩(𝜂𝜂, 0,𝜎𝜎) is the density of a normal distribution with zero mean and standard deviation 
𝜎𝜎 at the point 𝜂𝜂. Therefore, expected information gain can be expressed as an integral over 
the noise and model parameters: 
 

  (41) 

 
In the present work, both prior distribution of model parameters and probability distribution 
of noise are considered to be normal. Uniform distribution of design parameters 𝒅𝒅 is 
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introduced as well. Therefore, it is natural to utilize PCE to build a surrogate model for the 
function inside the integral in Eq. (40): 
 

  (42) 

 
Where 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3 are multi-indices and 𝑝𝑝𝐴𝐴1 ,𝑝𝑝𝐴𝐴2 ,𝑝𝑝𝐴𝐴3 are PCE basis functions that depend only 
on 𝜃𝜃 and 𝜂𝜂, respectively. Given the response surface for 𝐷𝐷KL(𝑓𝑓(𝜃𝜃,𝒅𝒅) + 𝜂𝜂,𝒅𝒅), it is possible to 
derive a response surface for 𝑈𝑈(𝒅𝒅) with a similar method to the one utilized for derivation of 
the expression of the partial variances and Sobol' indices Eq. (27): 
 

  (43) 

 
Therefore, if PCE series for 𝐷𝐷KL(𝑓𝑓(𝜃𝜃,𝒅𝒅) +  𝜂𝜂,𝒅𝒅) is known, then PCE approximation for 𝑈𝑈(𝒅𝒅) 
can be computed by selecting only that terms from Eq. (41) that have degree zero with respect 
to 𝜂𝜂 and 𝜃𝜃 . Unfortunately, approximating 𝐷𝐷KL(𝑓𝑓(𝜃𝜃,𝒅𝒅) + 𝜂𝜂,𝒅𝒅) could be a challenging task 
due to the curse of dimensionality. Therefore, in the present work it is proposed to generate 
the training data for 𝐷𝐷KL(𝑓𝑓(𝜃𝜃,𝒅𝒅) +  𝜂𝜂,𝒅𝒅) as a function of 𝒅𝒅, 𝜃𝜃 and 𝜂𝜂 and approximate it with 
polynomials that depend on  only. Therefore, the PCE coefficients for 𝑈𝑈(𝒅𝒅) are computed 
as a solution to the following minimization problem: 
 

  (44) 

 
Where the hyperparameters 𝜆𝜆1 and 𝜆𝜆2 are tuned to minimize the cross-validation error. It can 
be shown that if the model parameters 𝜃𝜃𝑖𝑖  and 𝜂𝜂𝑖𝑖  are sampled from prior distribution and from 
distribution of measurements errors respectively, then the solution for Eq. (44) approximates 
the actual PCE coefficients of 𝑈𝑈(𝒅𝒅) and coincide with them if size of the training data goes 
to infinity. Therefore, the proposed technique can be applied for calculation of PCE 
coefficients for the expected information gain.  
 
The practical difficulty with application of Eq. (44) for calculation of PCE coefficients is the 
high level of noise because 𝐷𝐷KL(𝑓𝑓(𝜃𝜃𝑖𝑖 ,𝒅𝒅𝒊𝒊) +  𝜂𝜂𝑖𝑖 ,𝒅𝒅𝒊𝒊) oscillates near the average value 𝑈𝑈(𝒅𝒅). 
Therefore, a significant number of training points is required to compute 𝑐𝑐.,0,0

∗  with reasonable 
accuracy. Our numerical experiments demonstrate that it requires around 100,000 training 
points to develop an accurate PCE approximation for the expected information gain. Even 
with such size of the training data, the computational cost of derivation of PCE surrogate for 
𝑈𝑈(𝒅𝒅) is comparable with  evaluations of 𝑈𝑈(𝒅𝒅) at different points. Therefore, the proposed 
technique has a potential to significantly accelerate calculation of the optimal experimental 
design parameters. 
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6 Numerical Examples 

In this section, we evaluate the proposed PCE-based approach to solve the optimal Bayesian 
experimental design on several numerical examples. The proposed technique is first validated 
against simple analytical models that admits an approximate analytical solution. Further 
evaluations are presented on subsurface flow problem relevant to the capacity estimation of 
CO2 storage sites. 
 
6.1 Test case 1 

In the current test case, two models in the form of Eq. (1) are considered: 
 
  (45) 
 
where 𝑎𝑎 = 1, 2 is the model index, 𝑚𝑚𝑎𝑎 are the observable data for model 𝑎𝑎, 𝜃𝜃 and 𝑑𝑑 are one-
dimensional design parameters, 𝜂𝜂𝑎𝑎 is a normally distributed noise with standard deviation 𝜎𝜎. 
The nonlinear functions 𝑓𝑓𝑎𝑎(𝜃𝜃,𝒅𝒅) are defined by: 
 
  (46) 
  (47) 
 
Models from Eq. (46) and Eq. (47) describe similar systems. The principal difference between 
these two models is in the degree of smoothness. The model defined by Eq. (46) has a 
discontinuity in the first order derivatives while the model defined by Eq. (47) has continuous 
derivatives of any order. Due to that, systems described by Eq. (46) and Eq. (47) are referred 
to as non-smooth and smooth, respectively. 
 
For both models, the parameter 𝜃𝜃 is a uniformly distributed random variable in 𝒰𝒰[0; 1] and 
𝑑𝑑 ∈ [0; 1]. For small values of  the following approximation for the KL-divergence can be 
derived: 
 

 (48) 

 
Here, we neglect the value of 𝜂𝜂. Therefore, Eq. (48) is only valid for small values of 𝜎𝜎. 
 
In the present test case, 200,000 values of𝜃𝜃 and 𝜂𝜂 are sampled from prior distribution 𝒰𝒰[0; 1] 
and from normal distribution with variance 𝜎𝜎, respectively. The following values of  are 
considered: 3.0 × 10−3, 1.0 × 10−3, 3.0 × 10−4 and 1 × 10−4. The range of parameter  is 
selected in such a way that assumption about small magnitude of 𝜎𝜎 is valid for the smallest  
considered and is violated for the highest one. In such setting, 200,000 samples for 𝒅𝒅 are 
generated for uniform distribution 𝒰𝒰[0; 1]. For each generated sample the KL-divergence is 
computed numerically using Eq. (41). The first term in Eq. (41) is computed with 50,000 
MCMC-samples generated from the posterior distribution and the second term in Eq. (41) is 
computed with 200,000 MCMC-samples generated from the prior distribution Eq. (2). Since 
the KL-divergence values have already been generated for all samples, 𝒅𝒅 is rescaled to 
𝒰𝒰[−1; 1] in order to allow for using Legendre polynomials as a basis function in the PCE 
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expansion. Polynomials up to degree eight were utilized in order to produce a response 
surface for 𝑈𝑈(𝒅𝒅) in accordance with Eq. (44) For the purposes of validation, the utility function 
values at any given 𝒅𝒅 is computed via Eq. (41) and Eq. (48), where the integration is replaced 
by averaging over 200,000 samples generated in agreement with the prior distribution 
𝒰𝒰[0; 1] and the likelihood defined in Eq. (4). Results of comparison of two techniques for 
𝑈𝑈(𝒅𝒅) calculation are shown in Figure 2 and Figure 3. 

 
It can be observed that for both of the test cases the proposed PCE approach provides a 
relatively accurate approximation of the utility function 𝑈𝑈(𝒅𝒅). Almost exact match can be 
observed for the cases of small 𝜎𝜎 where the KL-divergence approximate defined in Eq. (48) is 
supposed to be valid. For small values of 𝜎𝜎, both methods that correspond to Eq. (41) and Eq. 
(48) provides similar estimates for 𝑈𝑈(𝒅𝒅). However, for high 𝜎𝜎 values some divergence 
between those techniques is observed. This is expected because Eq. (48) is not supposed to 
work in those cases. In addition to that, the PCE response surface for 𝑈𝑈(𝒅𝒅) failed to reproduce 
the discontinuity in the derivative of 𝑈𝑈(𝒅𝒅) as it can be observed in Figure 2. This is an expected 
behaviour of PCE response surface because of the smooth basis functions. What is more 
important, the design value 𝒅𝒅 corresponding to the local optimum is accurately reproduced. 
Therefore, the present test case demonstrates that the introduced PCE based technique for 
estimating the utility 𝑈𝑈(𝒅𝒅) function is more accurate for smooth problems. However, the 

 
Figure 2: Plots of the expected information gain 𝑈𝑈(𝒅𝒅) versus the design parameter 𝒅𝒅 for non-smooth objective 
functions defined in Eq. (46) for different values of ơ . 
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proposed PCE based approach could still be used for both smooth and non-smooth cases to 
estimate the optimal Bayesian experimental design, because the design values 𝑈𝑈(𝒅𝒅) 
maximizing the utility 𝑈𝑈(𝒅𝒅) are accurately approximated. 
 

 
6.2 Test case 2 

In this test case, we consider a two-phase subsurface flow related to the forecast of 
hydrocarbon oil production. On one hand, the accuracy of the forecast is directly related to 
the quantity and quality of available data used to estimate the subsurface rock properties. On 
the other hand, direct measurements of those properties is an expensive process. Therefore, 
utilizing optimal experimental design techniques to decide which data to be collected in order 
to produce accurate predictions of hydrocarbons production is of great practical importance. 
In the present numerical example we optimize the design of experiment in order to maximize 
the accuracy of subsurface parameters measurements, which in turn reduce the uncertainty 
in the oil production forecast. 
 
In the present test case, numerical simulations of oil production enhanced by well-known 
water-flooding technique are studied. During this process water is injected into the reservoir 
via a group of wells called injection wells (aka. injectors) and displaces oil that saturates the 
pores of the reservoir rocks. Hydrocarbons, in turn, are produced via another group of wells 

 
Figure 3: Plots of the expected information gain 𝑈𝑈(𝒅𝒅) versus the design parameter 𝒅𝒅 for smooth objective 
functions defined in Eq. (47) for different values of ơ. 
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called production wells (aka. producers). The fluid flow in the reservoir together with the oil 
production rates is controlled by the spatial distribution of reservoir properties namely, the 
porosity field 𝜙𝜙(𝒓𝒓) and the permeability field 𝑘𝑘(𝒓𝒓). Typically, the porosity and permeability 
are known at several locations in the reservoir where rock samples have been extracted 
during drilling. These point values are then used within stochastic interpolation frameworks 
(aka. Geo-statistics [Richard Webster et al., 2015]) to populate the model parameters over 
the entire domain of interest. 
 
In the present test case, we solve for optimal design of experiment based on Bayesian 
framework. We consider a five-spot injection pattern where an injection well is located at the 
centre of a square surrounded by four production wells. Given the symmetry of this pattern, 
only one quarter of the domain is modelled with one producer and one injector located at the 
opposite corners of a square domain. The length of the edge of that square is set to 𝐿𝐿 =
500m. The thickness of the reservoir isℎ = 10m. We do not consider discretization along the 
vertical direction and we only consider a two-dimensional flow problem. Further, the porosity 
is considered to be constant value,𝜙𝜙(𝒓𝒓) = 0.2. Also, we assume that data is collected by 
drilling additional wells and results in a measurement of the permeability value at the location 
and a measurement of the pressure value at specified moments of time. Alternative sources 
of data, like seismic measurement are not considered in the present example. 
 
In this setting, the vector of design parameters 𝒅𝒅 is formed by the 2D coordinates additional 
wells and the dimension of the design parameter space can be computed as following: 
 
  (49) 
 
Where 𝑛𝑛𝑠𝑠 is total number of new wells. In the present example only two cases are considered: 
𝑛𝑛𝑠𝑠 = 1, 2. 
 
The vector of model parameters 𝜃𝜃 is introduced via Karhunen-Loeve (KL) expansion for the 
spatially discretized log-permeability field log (𝑘𝑘(𝒓𝒓)). The log-permeability distribution is 
assumed to be a linear combination of the reference permeability field representing the 
general trend of the field and random perturbation that is defined stochastically: 
 
  (50) 
 
where 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝒓𝒓) is the reference permeability field at the point 𝒓𝒓, 𝑘𝑘(𝒓𝒓) is a value of 
permeability field at 𝒓𝒓 and 𝜁𝜁(𝒓𝒓) represents the perturbations to the logarithm of the 
reference permeability. The perturbation 𝜁𝜁(𝐫𝐫) is set as zero at the locations of injector and 
producer wells as the permeability is known at those grid blocks. For generating multiple 
realizations of the log�𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝒓𝒓)�, KL expansion is applied to spatially discretized permeability 
field. In more details, it is assumed that values of log�𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝒓𝒓)� at grid-blocks are exponentially 
correlated: 
 

  (51) 
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where 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = 0.3𝐿𝐿 and 𝐿𝐿𝑝𝑝 = 0.1𝐿𝐿 is the correlation length for reference permeability and 
perturbation and 𝐿𝐿 = 500m is the side of the square reservoir. For both log(𝑘𝑘(𝒓𝒓)) and 𝜁𝜁(𝒓𝒓) 
KL expansion is performed: 
 

  (52) 

 
where 𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 and 𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗(𝒓𝒓) are eigenvalues and eigenfunctions respectively for KL expansion 
for the random field with correlation length 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟, 𝜆𝜆𝑝𝑝,𝑗𝑗 and 𝜉𝜉𝑝𝑝,𝑗𝑗(𝒓𝒓) are eigenvalues and 
eigenfunctions respectively for KL expansion for the random field with correlation length 𝐿𝐿𝑝𝑝 
respectively, 𝜒𝜒𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 and 𝜒𝜒𝑝𝑝,𝑗𝑗 are uncorrelated normally distributed random variables with zero 
means and standard deviations 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 = 2.0 and 𝜎𝜎𝑝𝑝 = 0.5. In the present work permeability 
field is normalized in such a way that zero values of 𝜒𝜒𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 correspond to permeability of 1mD 
(1mD=9.869233×10−16m2). Both reference permeability distribution and perturbation are 
generated stochastically by sampling of random values from appropriate normal distribution 
for 𝜒𝜒𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 and 𝜒𝜒𝑝𝑝,𝑗𝑗. 
 
In the present example, the KL expansion for the reference permeability distribution is 
truncated and only first 50 eigenfunctions are considered. Then a single realization of 
reference permeability distribution is selected and utilized in all calculations in the present 
test case. The perturbation 𝜁𝜁(𝒓𝒓) to the log�𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝒓𝒓)� is constructed in almost the same 
fashion. However, different values of correlation length and variance are utilized to perform 
the KL expansion. Moreover, only first five terms of the KL expansion are considered. In 
addition to that, two linear constraints on 𝜁𝜁(𝒓𝒓) are utilized, because the perturbation 
vanishes at the injector and production wells. Therefore, 𝜁𝜁(𝒓𝒓) is effectively parametrized with 
five coefficients of the KL expansion: 𝜒𝜒𝑝𝑝,1, … , 𝜒𝜒𝑝𝑝,5. It is clear that for a fixed 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝒓𝒓), the 
permeability distribution 𝑘𝑘(𝒓𝒓) is fully parametrized by the same parameters due to Eq. (52). 
Therefore, the dimension of the model parameter space dim (𝜃𝜃) is simply . Figure 4 shows 
examples of the permeability field generated with the described approach above. 
 
The observations vector  is formed by values of the permeability and pressure at selected 
locations. The pressure is measured at early stage of water-flooding at four different 
moments of time that correspond to four different values of total injected volume of water 
measured as a fraction of total reservoir pore volume or PVI. Two scenarios of pressure 
measurements are considered. In the first scenario only value of pressure for PVI = 1% is 
measured. In the second scenario, the pressure is measured for PVI = 1%, 2%, 3%, 4%. 
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In the current numerical example, the observations vector is computed numerically by solving 
a coupled system of PDEs namely the conservation of mass and conservation of momentum 
coupled via Darcy law: 
 

  (53) 

 
Where 𝑠𝑠𝑎𝑎 = 𝑠𝑠𝑎𝑎(𝒓𝒓) is a volumetric fraction or saturation of fluid with index 𝑎𝑎 (water or oil) at 
the point 𝒓𝒓, 𝜙𝜙 = 𝜙𝜙(𝒓𝒓) is rock porosity at point 𝒓𝒓 and 𝑘𝑘 = 𝑘𝑘(𝒓𝒓) is permeability at the point 𝒓𝒓, 
𝑘𝑘𝑎𝑎 = 𝑘𝑘𝑎𝑎(𝑠𝑠) is the relative phase permeability that depends only on the fluid saturations 𝑠𝑠 at 
the point 𝒓𝒓, 𝑃𝑃 = 𝑃𝑃(𝒓𝒓) is the pressure at point 𝒓𝒓, 𝜌𝜌𝑎𝑎 is the density of fluid 𝑎𝑎, 𝜇𝜇𝑎𝑎 is the viscosity 
of fluid 𝑎𝑎, 𝑄𝑄𝑎𝑎 = 𝑄𝑄𝑎𝑎(𝒓𝒓) is source term at the point 𝒓𝒓. In the case of incompressible flow, Eq. 
(53) admits the following simplification: 
 

  (54) 

Where 𝑞𝑞𝑎𝑎 = 𝑄𝑄𝑎𝑎 𝜌𝜌𝑎𝑎⁄  is the source term for fluid 𝑎𝑎 normalized to the density of corresponding 
fluid. For calculating the relative phase permeabilities, Brooks-Corey model [Brooks et al., 
1964] is utilized: 
 

  (55) 

 

 
Figure 4: Realizations of the perturbations 𝜁𝜁(𝒓𝒓) shown in panels (a, b, c, d) and the corresponding permeability 
field 𝑙𝑙𝑙𝑙𝑙𝑙(𝑘𝑘(𝒓𝒓)) shown in the panels (e, f, g, h), respectively  
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where 𝑘𝑘𝑤𝑤 and 𝑘𝑘0 are the values of the relative phase permeability for water and oil, 
respectively and 𝑘𝑘𝑤𝑤

(0) and 𝑘𝑘𝑜𝑜
(0) are the maximum values of the relative phase permeability for 

water and oil, respectively. The values 𝑝𝑝𝑤𝑤 and 𝑝𝑝𝑜𝑜 are dimensionless parameters of the model 
and 𝑆𝑆wn is the normalized water saturation defined as: 
 

  (56) 

 
where 𝑆𝑆wir and 𝑆𝑆owr are the irreducible water and oil saturations, respectively. For the 
purposes of simplicity, incompressible immiscible fluids is considered while neglecting gravity 
effects. 
 
A uniform square grid is used for simulations and the dimensions of each grid-block is 10m 
by 10m by 10m. In other words, a 50 by 50 by 1 mesh is used for discretization. Pressures at 
injection and production wells are considered to be constant and equal to 200 Bar and 
100 Bar respectively. The fluid properties and parameters of Corey model are essentially the 
same as in [Tarakanov et. al., 2019] and are summarized in the Table 1. 
 

, cP , cP     

      
Table 1. Fluid properties and parameters of the model for relative-phase permeability. 

 
The evolution of incompressible flow is fully determined by the pressure differences between 
the injection well and the production wells and does not depend on the absolute values of 
those pressures. Therefore, the pressure distribution is rescaled in the following way: 
 

  (57) 

 
where 𝑃𝑃0 and 𝑃𝑃1are the pressures at the injection well and production wells and 𝑃𝑃∗(𝑡𝑡, 𝒓𝒓) is a 
normalized pressure. In the present test case, normalized pressure 𝑃𝑃∗(𝑡𝑡, 𝒓𝒓) is utilized for 
construction of observations vector Eq. (1). 
 
Figure 5 shows the pressure and saturation distributions for the reference permeability field 
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝒓𝒓) at different PVI values. The plots demonstrate that reference permeability field is 
highly heterogeneous, leading to a highly heterogeneous distribution of the saturation field. 
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Direct utilization of flow simulations in Bayesian experimental design is not feasible due to 
the high computational cost of estimating the utility function 𝑈𝑈(𝒅𝒅). Therefore, PCE-based 
response surface for both 𝜁𝜁(𝒓𝒓) and 𝑃𝑃∗(𝑡𝑡, 𝒓𝒓) has been developed. For that purpose, numerical 
simulations on 5,000 different realizations of perturbation to the reference permeability field 
have been performed. A total of 4,000 of those simulations are utilized for building (aka. 
training) the PCE-based response surface and the remaining 1,000 model runs are used for 
validation and hyper-parameters optimization. For each simulation from the training set, a 20 
grid blocks are randomly sampled and the values of 𝜁𝜁(𝒓𝒓) and 𝑃𝑃∗(𝑡𝑡, 𝒓𝒓) are added to the training 
dataset. Finally, the PCE surrogate for permeability perturbation and pressure has been 
developed as a function of two spatial coordinates and five coefficients of KL expansion. Both 
spatial coordinates and parameters of perturbation are rescaled in such a way that classical 
families of orthogonal polynomials can be utilized. Namely, Legendre and Hermite 
probabilistic polynomials are utilized for the spatial variables and parameters of KL expansion, 
respectively. Basis polynomials of degree up to eight with respect to all variables are 
considered in PCE. Additional constraint is imposed on the Hermite polynomials, where only 
basis functions of degree up to four are utilized. The PCE coefficients are computed via 
minimization of mean-square error functional with Elastic-Net regularization terms [Hastie et. 
al., 2010] The accuracy of the response surface on the validation data is around 3%. The cross-
plots shown in Figure 6 demonstrate quality of the response surface on both the training and 
validation dataset. 

 
Figure 5: Snapshots of pressure (a, b, c, d) and saturation (e, f, g, h) distributions for and respectively computed 
for the reference permeability field PVI = 1%, 2%, 3% and 4%. 
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In the proposed method, the model function 𝑓𝑓(𝜃𝜃,𝒅𝒅) is calculated via PCE-based response 
surface and the differences between the model predictions and observations are assumed to 
follow a normal distribution and the standard deviation for that difference 𝜎𝜎 is assumed to 
be the same for all the components of vector of observables. This is generally true, as long as 
𝜁𝜁(𝒓𝒓) and 𝑃𝑃∗(𝑡𝑡, 𝒓𝒓) are dimensionless quantities. In this test case, the standard deviation is set 
to be 𝜎𝜎 = 1.0 × 10−3. A total of 200,000 realizations of design parameters  are sampled in 
both cases with 𝑛𝑛𝑠𝑠 = 1 and 𝑛𝑛𝑠𝑠 = 2. All model parameters are rescaled linearly in order to be 
uniformly distributed in the interval [−1; 1]. For each of the samples KL-divergence is 
computed with MCMC chain of length 50,000. The computed data is then fitted with 
Legendre polynomials on a rescaled design parameters only. PCE is truncated by the total 
polynomial degree, which is set to 5. According to Eq. (44) the surrogate model developed 
represents 𝑈𝑈(𝒅𝒅) directly. The response surfaces for 𝑈𝑈(𝒅𝒅) are visualized for the case of a single 
new well, for the two different number of pressure measurements is shown in Figure 7. 
 
According to the colour maps of expected information gain for two scenarios of pressure 
measurements and for single additional well (shown in Figure 7), there are two peaks of the 
utility function located at the corners of the model domain opposite to the injection and 
production wells as demonstrated in Figure 7a. In the second scenario when additional 
measurements of pressure are added, only one maximum is observed (at the lower left corner 
of the domain) as shown in Figure 7b. This observation is in agreement with the variance of 
perturbation of permeability and pressure as shown in Figure 8a and Figure 8b, respectively. 
In the case of a single measurement of pressure, the variance of permeability perturbation 
determines the shape of the utility function. In the second scenario, when extra pressure 
measurements are added the contribution of pressure variance becomes more significant. 
Therefore, the maximum of the utility function is shifted towards the maximum of the 
pressure variance. In other words, optimal parameters of experiment according to the 
Bayesian technique are in the proximity to the point where the sensitivity of the model 

 
Figure 6: Cross-plots of reference values and predictions of PCE surrogate model for training (a) - (e) and test (f) 
- (j) data respectively. Figures (a) and (f) correspond to permeability perturbation and remaining figures 
correspond to deviation from the reference pressure for different values of PVI. 
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predictions to model parameters is the highest in terms of standard deviations. The latter 
observation is in agreement with common sense of experimental design. 
 
 

 
Figure 7: PCE response surface for expected information gain for experiments with one (a) and four (b) 
pressure measurements. 

 
 

 
Figure 8: Variance of 𝒍𝒍𝒍𝒍𝒍𝒍𝒌𝒌 at a given grid-block (a) and variance of normalized pressure at a given grid-block 
(b) computed from training data. 
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Figure 9: Values of the expected information gain as a function the first well position if the location of the 
second well is fixed. Each of the figures (a) - (y) corresponds to different coordinates of the second well that 
corresponds to the minimum of the utility function (dark blue). Case of single pressure and permeability 
measurement is presented. 

 
The calculation of 𝑈𝑈(𝒅𝒅) for the case of two new measurement wells is performed in a similar 
fashion. In the present scenario of measurements, we focus on the examination of PCE-based 
response surface for 𝑈𝑈(𝒅𝒅) rather than on optimization of utility function. Therefore, optimal 
design parameters are not provided for the current test case. Instead, the quality of response 
surface is assessed visually, given the low dimension of the design parameter space and clear 
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geometric meaning of those parameters (aka well location). For that purpose, a 5 by 5 
uniform lattice of possible locations of the second well has been generated and the expected 
information gain as a function of the location of the first well is plotted in Figure 9, where a 
single pressure measurement is performed at each new well. For four pressure 
measurements, the results are shown in Figure 10. 
 

 
 
Figure 10: Values of the expected information gain as a function the first well position if the location of the 
second well is fixed. Each of the figures (a) - (y) corresponds to different coordinates of the second well that 
corresponds to the minimum of the utility function (dark blue). Case of single permeability and four pressure 
measurements is presented. 
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It can be observed from Figure 9 and Figure 10 that the minimum of expected information 
gain is achieved when the exploration wells are drilled close to each other or close to either 
the production or injection wells. Moreover, the expected information gain is high when all 
those wells are far from each other. In addition to that, Figure 9 and Figure 10 demonstrate 
that optimal experimental design corresponds to the case when measurements are collected 
at vicinity of domain corners that are far from the location of injection and production wells. 
The latter is in agreement with the variance distribution of logarithm of permeability and 
pressure shown in Figure 8a and Figure 8b, respectively. Therefore, the proposed technique 
provides reasonable estimates for 𝑈𝑈(𝒅𝒅) in the scenario concerned. 
 
Finally, the proposed PCE-based expected information gain provides reasonable 
approximation of the utility function in both cases (single and multiple pressure 
measurements) and for single and two additional wells utilized for measurements. In all of 
the cases, the estimates concerned are in agreement with variation of permeability and 
pressure measurements collected at locations with higher variance of permeability and 
pressure provide more information about permeability distribution. Additionally, PCE-based 
expected information gain 𝑈𝑈(𝒅𝒅) reflects generic dependencies between location of 
exploration wells and magnitude of 𝑈𝑈(𝒅𝒅). Taking measurements at spatially close points of 
the reservoir or at the neighbourhood of injection and production wells is definitely not the 
optimal strategy of experiment. Therefore, PCE-based response surface provides reasonable 
representation of 𝑈𝑈(𝒅𝒅) and allows one to determine parameters of the optimal experimental 
design. 
 
7 Conclusion 

In this report, we introduce a new approach to Bayesian experimental design. The proposed 
technique utilizes PCE for averaging the KL-divergence with respect to the prior distribution 
of model parameters and measurement errors. The result of this procedure is a PCE response 
surface for the expected information gain. The proposed technique provides dramatic 
acceleration of solution for optimal parameters of data acquisition processes.  
 
The proposed PCE approach has a high degree of flexibility and can be naturally extended to 
other systems including simulations of CO2 sequestration process. The only assumptions that 
have been made include normal prior distribution and normal distribution of measurement 
errors. Both of these assumptions are natural and valid for a wide variety of practical systems. 
In addition to that, Rosenblatt transformation [Rosenblatt, 1952] can be applied to build a 
normal distribution in the parameter space of concern. Therefore, the proposed PCE 
technique can be applied to vast range of problems including CCS.  
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